Page images
PDF
EPUB

nen Werthe; bestimmt man jedes dieser Verhältnisse dagegen aus den beiden anderen beobachteten Zahlen, so gelangt man zu den als ,,berechnet" bezeichneten.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors]

Die Uebereinstimmung ist eine sehr gute.

In der von den Herren Winkelmann und Schott veröffentlichten Tabelle 1) der Constanten einiger Glassorten finden sich drei Gläser, die nach der Mittheilung von Hrn. Schott den mir gesandten sehr ähnlich sind; die dort mit (19-5=80) bezeichnete soll mit (1), (21=41) mit (2), (20=58) mit (3) nahezu übereinstim

[graphic]

men. Indessen ist die thermische Leitfähigkeit nur für die erste Sorte beobachtet, für die beiden anderen aus der chemischen Zusammensetzung nach einer Interpolationsformel berechnet, die gerade für die erste Sorte besonders schlecht mit der Beobachtung stimmt. 2) Deshalb sind die in jener Tabelle angegebenen

Zahlen mit den obigen nicht wohl vergleichbar.

Die nebenstehende Figur stellt in etwa dreifacher Vergrösserung eine der benutzten Glasdoppelplatten nach Erwärmung von rechts und von unten her dar. Der Ueberzug bestand aus Elaidinsäure mit ziemlich geringem Zusatz von Wachs und Terpentin, er hat also beim Erkalten etwas

1) A. Winkelmann u. O. Schott, Wied. Ann. 51. p. 742. 1894. 2) S. Paalhorn 1. c. p. 30; in der dortigen Tabelle steht jene Glassorte in letzter Reihe, und dem beobachteten Werth 2,267 entspricht der berechnete 2,046.

121983

krystallinische Structur angenommen. Die Abkühlung nach dem eigentlichen Versuch geschah sehr langsam, darum sind hierbei grössere Krystallindividuen entstanden, als in dem ursprünglichen Ueberzug, der sehr schnell zum Erstarren gebracht war. Gerade durch diesen kleinen Kunstgriff haben die Schmelzcurven die ausserordentliche Feinheit und Schärfe erhalten, die man wenngleich nicht eben sehr deutlich auch in dem Photogramme wahrnehmen kann.

Göttingen, im Juni 1897.

(Eingegangen 25. November 1897.)

9.

Ueber Wärmeleitung in verdünnten Gasen; von M. Smoluchowski Ritter von Smolan.

I. Einleitung.

Strömt eine Flüssigkeit längs einer festen Wand, so ist die an der Wand geltende Grenzbedingung:

[blocks in formation]

worin v und v' die Geschwindigkeiten der Flüssigkeit und der Wand, n die von der Grenzfläche ins Innere der Flüssigkeit gezogene Normale bedeutet, und eine Constante ist, nämlich eine Länge, die nach Helmholtz1) als Gleitungscoefficient bezeichnet wird.

Ist derselbe Null, so ist die Geschwindigkeit der Flüssigkeit gleich jener der Wand, es findet keine Gleitung statt. Dies ist das Verhalten, welches bei früheren Versuchen immer 2) beobachtet wurde, bis Kundt und Warburg3) zeigten, dass in Gasen bei grösserer Verdünnung eine messbare Gleitung stattfindet.

Aus ihren Versuchen sowie aus der späteren Arbeit Prof. Warburg's) ergab sich für den Gleitungscoefficienten die Beziehung

C = k λ,

wo die mittlere Weglänge der Gasmolecule und keine Constante bezeichnet, die nach den Versuchen zwischen den Werthen 1,3 und 1,0 schwankt, und dieses Resultat ist auch in Uebereinstimmung mit der kinetischen Gastheorie, welche ebenfalls Proportionalität des Gleitungscoefficienten und der mittleren Weglänge fordert.

1) Helmholtz, Sitzungsber. d. k. k. Gesellsch. der Wissensch. zu Wien. 40. p. 607. 1860.

2) Mit Ausnahme von Helmholtz und Piotrowski 1. c.

3) Kundt u. Warburg, Pogg. Ann. 155. p. 337. 1875.
4) Warburg, Pogg. Ann. 159. p. 399. 1876.

Vielfache Analogien mit der Theorie der inneren Reibung, insbesondere in Gasen, treffen wir bei der Theorie der Wärmeleitung wieder. So wurde hier als Bedingung, welche den Verlauf der Temperatur an der Grenze zwischen zwei Körpern bestimmt, deren Wärmeleitungscoefficienten x und x' sind, von Poisson die Gleichung aufgestellt:

[merged small][ocr errors][ocr errors]
[ocr errors]
[ocr errors][merged small]

wo n die nach dem Inneren des ersten Körpers gezogene Normale bedeutet, und der Quotient x/q dem obigen entspricht. Ist dieser Quotient, welchen wir der Analogie wegen Temperatursprungcoefficient = 7 nennen wollen, gleich Null, also q∞, so ist das Temperaturgefälle in den Grenzschichten zwischen den beiden Körpern ein stetiges; wenn derselbe von Null verschieden ist, so muss dagegen an der Grenzfläche ein endlicher Temperatursprung stattfinden.

=

Bisher ist kein Fall bekannt, wo ein von Null verschiedener Coefficient gefunden worden, oder wo dieser Temperatursprung thatsächlich gemessen worden wäre, doch machten Kundt und Warburg darauf aufmerksam, dass der kinetischen Gastheorie zufolge solche der Gleitung der Gase analoge Phänomene an der Grenzfläche von Gasen und festen Körpern bei niedrigen Drucken zu bemerken sein müssten.

Auf eine gütige Anregung Hrn. Prof. Warburg's hin habe ich, um dies näher zu untersuchen, die Arbeit unternommen, deren Resultate im Folgenden mitgetheilt werden sollen. Wie ich gleich jetzt bemerken will, wird sich zeigen, dass hierbei thatsächlich ein solcher Temperatursprung auftritt, sowie dass der Coefficient y von derselben Grössenordnung wie die mittlere Weglänge und derselben proportional ist.

Dass dies so sein müsse, lässt sich übrigens auch leicht vom Standpunkte der kinetischen Gastheorie aus einsehen. Allerdings wird dabei die Existenz des Temperatursprunges auf eine etwas abweichende Art erklärt, als es von Poisson geschah, indem man denselben auf eine Aenderung der molecularen Bewegungsvorgänge in den äussersten Gasschichten infolge der Reflexion der Molecüle von dem festen Körper zurückführt, während Poisson zur Begründung der Grenzbedingung hauptsächlich die Strahlungs- (und auch Strömungs-)

Vorgänge heranzieht, deren Einfluss bei den vorliegenden Versuchen eliminirt ist. Doch will ich diese gastheoretischen Untersuchungen einer späteren Arbeit vorbehalten und werde mich hier darauf beschränken, den experimentellen Theil darzulegen.

Die Methode, welche ich anwendete, ist im wesentlichen mit derjenigen identisch, welche von Kundt und Warburg (1. c.) zur Bestimmung des Wärmeleitungscoefficienten in Gasen benutzt worden war. Hierbei wird ein Glasgefäss, in welches ein Thermometer, luftdicht eingeschliffen, hineinragt, zuerst solange erwärmt, bis auch das Thermometer eine gewisse höhere Temperatur erlangt hat, dann plötzlich in Eis eingesenkt, und hierbei wird die Abkühlung des Thermometers beobachtet.

Diese wird verursacht durch Wärmeleitung und Strömung in dem Gase und durch Strahlung. Die Wirkung der Convectionsströme nimmt nun sehr rasch ab, wenn das Gas verdünnt wird, wie (1. c.) auch theoretisch nachgewiesen wird; bei Verminderung des Druckes wird also die Abkühlungszeit wachsen, von einem gewissen Drucke an aber, wo der Einfluss der Strömungen unmerklich wird, constant bleiben, da der Wärmeleitungscoefficient ebenso wie der Coefficient der inneren Reibung vom Drucke unabhängig ist.

Uebrigens waren die Strömungen in den von mir benutzten engen Apparaten sehr gering, und nur in einem Falle (Luft im Gefässe II) war überhaupt eine Verlängerung der Abkühlungszeit zwischen Atmosphärendruck und 40 mm bemerkbar.

Dann geschieht also die Abkühlung nur mehr durch Leitung und Strahlung. Letztere hängt nur von der Gestalt und Oberflächenbeschaffenheit des Thermometers ab, ist also eine Constante, welche, wie im Folgenden dargelegt wird, bestimmt und eliminirt werden kann.

Bei niedrigen Drucken findet nun, wie schon Kundt und Warburg bemerkt hatten, eine Verlängerung der Abkühlungszeit statt, und diese war es, welche ich vor allem zu untersuchen hatte. Wenn sie sich durch den erwähnten, aus der Gastheorie folgenden Temperatursprung erklären liess, so musste sich der Coefficient 7, wenn aus den Differenzen be

« PreviousContinue »