Page images

hammers strike the strings so as to make them vibrate at right angles to it. In the guitar, on the contrary, they are struck obliquely, which renders the tone feeble, unless when the sides, which also act as a sounding-board, are deep. It is evident that the sounding-board and the whole instrument are agitated at once by all the superposed vil ns excited by the simultaneous or consecutive notes that are sounded, each having its perfect effect independently of the rest. A sounding-board not only reciprocates the different degrees of pitch, but all the nameless qualities of tone. This has been beautifully illustrated by Professor Wheatstone in a series of experiments on the transmission through solid conductors of musical performances, from the harp, piano, violin, clarinet, &c. He found that all the varieties of pitch, quality, and intensity are perfectly transmitted with their relative gradations, and may be communicated, through conducting wires or rods of very considerable length, to a properly disposed sounding-board in a distant apartment. The sounds of an entire orchestra may be transmitted and reciprocated by connecting one end of a metallic rod with a sounding-board near the orchestra, so placed as to resound to all the instruments, and the other end with the sounding-board of a harp, piano, or guitar, in a remote apartment. Professor Wheatstone observes, “ The effect of this experiment is very pleasing; the sounds, indeed, have so little intensity as scarcely to be heard at a distance from the reciprocating instrument; but, on placing the ear close to it, a diminutive band is heard in which all the instruments preserve their distinctive qualities, and the pianos and fortes, the crescendos and diminuendos, their relative contrasts. Compared with an ordinary band heard at a distance through the air, the effect is as a landscape seen in miniature beauty through a concave lens, compared with the same scene viewed by ordinary vision through a murky atmosphere.”

Every one is aware of the reinforcement of sound by the resonance of cavities. When singing or speaking near the aperture of a wide-mouthed vessel, the intensity of some one note in unison with the air in the cavity is often augmented to a great degree. Any vessel will resound if a body vibrating the natural note of the cavity be placed opposite to its orifice, and be large enough to cover it, or at least to set a large portion of the adjacent air in motion. For the sound will be alternately reflected by the bottom of the cavity and the undulating body at its mouth. The first impulse of the undulating substance will be reflected by the bottom of the cavity, and then by the undulating body, in time to combine with the second new impulse. This reinforced sound will also be twice reflected in time to conspire with the third new impulse; and, as the same process will be repeated on every new impulse, each will combine with all its echoes to reinforce the sound prodigiously. Professor Wheatstone, to whose ingenuity we are indebted for so much new and valuable information on the theory of sound, has given some very striking instances of resonance. If one of the branches of a vibrating tuning-fork be brought near the embouchure of a flute, the lateral apertures of which are stopped so as to render it capable of producing the same sound as the fork, the feeble and scarcely audible sound of the fork will be augmented by the rich resonance of the column of air within the flute, and the tone will be full and clear. The sound will be found greatly to decrease by closing or opening another aperture; for the alteration in the length of the column of air renders it no longer fit perfectly to reciprocate the sound of the fork. This experiment may be made on a concert flute with a C tuning-fork. But Professor Wheatstone observes, that in this case it is generally necessary to finger the flute for B, because, when blown into with the mouth, the under-lip partly covers the embouchure, which renders the sound about a semitone flatter than it would be were the embouchure entirely uncovered. He has also shown, by the following experiment, that any one among several simultaneous sounds may be rendered separately audible. If two bottles be selected, and tuned by filling them with such a quantity of water as will render them unisonant with two tuning-forks which differ in pitch, on bringing both of the vibrating tuningforks to the mouth of each bottle alternately, in each case that sound only will be heard which is reciprocated by the unisonant bottle.

Several attempts have been made to imitate the articulation of the letters of the alphabet. About the year 1779, MM. Kratzenstein of St. Petersburg, and Kempelen of Vienna, constructed instruments which articulated many letters, words, and even sentences. Mr. Willis of Cambridge has adapted cylindrical tubes to a reed, whose length can be varied at pleasure by sliding

joints. Upon drawing out a tube while a column of air from the bellows of an organ is passing through it, the vowels are pronounced in the order, i, e, a, 0, u. On extending the tube, they are repeated after a certain interval, in the inverted order, U, o, a, e, i. After another interval they are again obtained in the direct order, and so on. When the pitch of the reed is very high, it is impossible to sound some of the vowels, which is in perfect correspondence with the human voice, female singers being unable to pronounce u and o in their high notes. From the singular discoveries of M. Savart on the nature of the human voice, and the investigations of Mr. Willis on the mechanism of the larynx, it may be presumed that ultimately the utterance or pronunciation of modern languages will be conveyed, not only to the eye, but also to the ear of posterity. Had the ancients possessed the means of transmitting such definite sounds, the civilised world would still have responded in sympathetic notes at the distance of many ages.


Refraction · Astronomical Refraction and its Laws — Formation of Tables

of Refraction Terrestrial Refraction Its Quantity - Instances of extraordinary Refraction Reflection Instances of extraordinary Reflection Loss of Light by the Absorbing Power of the Atmosphere —

Apparent Magnitude of Sun and Moon in the Horizon. Not only everything we hear but all we see is through the medium of the atmosphere. Without some knowledge of its action upon light, it would be impossible to ascertain the position of the heavenly bodies, or even to determine the exact place of very distant objects upon the surface of the earth ; for, in consequence of the refractive power of the air, no distant object is seen in its true position.

All the celestial bodies appear to be more elevated than they really are; because the rays of light, instead of moving through the atmosphere in straight lines, are continually inflected towards the earth. Light passing obliquely out of a rare into a denser medium, as from vacuum into air, or from air into water, is bent or refracted from its course towards a perpendicular to that point of the denser surface where the light enters it (N. 189). In the same medium, the sine of the angle contained between the incident ray and the perpendicular is in a constant ratio to the sine of the angle contained by the refracted ray and the same perpendicular; but this ratio varies with the refracting medium. The denser the medium, the more the ray is bent. The barometer shows that the density of the atmosphere decreases as the height above the earth increases. Direct experiments prove that the refractive power of the air increases with its density. It follows therefore that, if the temperature be uniform, the refractive power of the air is greatest at the earth’s surface, and diminishes upwards.

A ray of light from a celestial object falling obliquely on this variable atmosphere, instead of being refracted at once from its course, is gradually more and more bent during its passage through it so as to move in a vertical curved line, in the same manner as if the atmosphere consisted of an infinite number of strata of different densities. The object is seen in the direction of a tangent to that part of the curve which meets the eye; consequently the apparent altitude (N. 190) of the heavenly bodies is always greater than their true altitude. Owing to this circumstance, the stars are seen above the horizon after they are set, and the day is lengthened from a part of the sun being visible, though he really is behind the rotundity of the earth. It would be easy to determine the direction of a ray of light through the atmosphere if the law of the density were known; but, as this law is perpetually varying with the temperature, the case is very complicated. When rays pass perpendicularly from one medium into another, they are not bent; and experience shows, that in the same surface, though the sines of the angles of incidence and refraction retain the same ratio, the refraction increases with the obliquity of incidence (N. 189). Hence it appears that the refraction is greatest at the horizon, and at the zenith there is none. But it is proved that, at all heights above ten degrees, refraction varies nearly as the tangent of the angular distance of the object from the zenith, and wholly depends upon the heights of the barometer and thermometer. For the quantity of refraction at the same distance from the zenith varies nearly as the height of the barometer, the temperature being constant; and the effect of the variation of temperature is to diminish the quantity of refraction by about its 480th part for every degree in the rise of Fahrenheit's thermometer. Not much reliance can be placed on celestial observations, within less than ten or twelve degrees of the horizon, on account of irregular variations in the density of the air near the surface of the earth, which are sometimes the cause of very singular phenomena. The humidity of the air produces no sensible effect on its refractive power; and it has been proved that the amount of refraction is the same whatever be the velocity of the incident light, that is whether the light comes from a star in that part of the heavens towards which the earth is going, or from one in that part of the sky whence it is receding.

Bodies, whether luminous or not, are only visible by the rays which proceed from them. As the rays must pass through strata of different densities in coming to us, it follows that, with the exception of stars in the zenith, no object either in or beyond our

« PreviousContinue »