Page images
PDF
EPUB

would then be exposed to the temperature of the ethereal regions, which is 239 below the zero point of Fahrenheit. A body of such tenuity as the comet, moving with such velocity, must have met with great resistance from the dense atmosphere of the sun, while passing so near his surface at its perihelion. The centrifugal force must consequently have been diminished, and the sun's attraction proportionally augmented, so that it must have come nearer to the sun in 1680 than in its preceding revolution, and would subsequently describe a smaller orbit. As this diminution of its orbit will be repeated at each revolution, the comet will infallibly end by falling on the surface of the sun, unless its course be changed by the disturbing influence of some large body in the unknown expanse of creation. Our ignorance of the actual density of the sun's atmosphere, of the density of the comet, and of the period of its revolution, renders it impossible to form any idea of the number of centuries which must elapse before this event takes place.

The same cause may affect the motions of the planets, and ultimately be the means of destroying the solar system. But, as Sir John Herschel observes, they could hardly all revolve in the same direction round the sun for so many ages without impressing a corresponding motion on the ethereal medium, which may preserve them from the accumulated effects of its resistance. Should this material medium revolve about the sun like a vortex, it will accelerate the revolutions of such comets as have direct motions, and retard those that have retrograde motions.

The comet which appeared unexpectedly in the beginning of the year 1843 was one of the most splendid that ever visited the solar system. It was in the constellation of Antinous in the end of January, at a distance of 115 millions of miles from the earth, and it passed through its perihelion on the 27th of February, when it was lost in the sun's rays; but it began to be visible about the 3rd of March, at which time it was near the star Iota Cetæ, and its tail extended towards the Hare. Before the passage at the perihelion it had no tail; but at that epoch the tail suddenly darted out, and extended to a distance of 1826 millions of miles in about an hour and a half-a most inexplicable speed of development, which indicates some powerful repulsive force at the moment of the greatest proximity to the sun, at which time the tails are formed. The brightness of the comet and the length

of its tail continued to increase till the latter stretched far beyond the constellation of the Hare towards a point above Sirius. Stars were distinctly seen through it, and when near perihelion the comet was so bright that it was seen in clear sunshine, in the United States, like a white cloud. The motion was retrograde, and on leaving the solar system it retreated so rapidly at once from the sun and earth that it was soon lost sight of for want of light. On the 1st of April it was between the sun and the earth, and only 40 millions of miles from the latter; and as its tail was at least 60 millions of miles long, and 20 millions of miles broad, we probably passed through it without being aware of it. There is some discrepancy in the different computations of the elements of the orbit, but in the greater number of cases the perihelion distance was found to be less than the semidiameter of the sun, so that the comet must have grazed his surface, if it did not actually impinge obliquely on him.

The perihelion distance of this comet differs little from that of the great comet of 1668, which came so near the sun. The motion of both was retrograde, and a certain resemblance in the two orbits makes it probable that they are the same body performing a revolution in 175 years.

Though already so well acquainted with the motions of comets, we know nothing of their physical constitution. A vast number, especially of telescopic comets, are only like clouds or masses of vapour, often without tails. The head commonly consists of a concentrated mass of light, like a planet, surrounded by a very transparent atmosphere, and the whole, viewed with a telescope, is so diaphanous, that the smallest star may be seen even through the densest part of the nucleus; in general their solid parts, when they have any, are so minute, that they have no sensible diameter, like that of the comet of 1811, which appeared to Sir William Herschel like a luminous point in the middle of the nebulous matter. The nuclei, which seem to be formed of the denser strata of that nebulous matter in successive coatings, are sometimes of great magnitude. Those comets which came to the sun in the years 1799 and 1807 had nuclei whose diameters measured 180 and 275 leagues respectively, and the second comet of 1811 had a nucleus 1350 leagues in diameter.

It must, however, be stated that, as comets are generally at prodigious distances from the earth, the solid parts of the nuclei

appear like mere points of light, so minute that it is impossible to measure them with any kind of accuracy, so that the best astronomers often differ in the estimation of their size by onehalf of the whole diameter. The transit of a comet across the sun would afford the best information with regard to the nature of the nuclei. It was computed that such an event was to take place in the year 1827; unfortunately the sun was hid by clouds from the British astronomers, but it was examined at Viviers and at Marseilles at the time the comet must have been projected on its disc, but no spot or cloud was to be seen, so that it must have had no solid part whatever. The nuclei of many comets which seemed solid and brilliant to the naked eye have been resolved into mere vapour by telescopes of high powers; in Halley's comet there was no solid part at all.

The nebulosity immediately round the nucleus is so diaphanous, that it gives little light; but at a small distance the nebulous matter becomes suddenly brilliant, so as to look like a bright ring round the body. Sometimes there are two or three of these luminous concentric rings separated by dark intervals, but they are generally incomplete on the part next the tail.

These annular appearances are an optical effect, arising from a succession of envelopes of the nebulous matter with intervals between them, of which the first is sometimes in contact with the nucleus and sometimes not. The thickness of these bright diaphanous coatings in the comets of 1799 and 1807 was about 7000 and 10,000 leagues respectively; and in the first comet of 1811 the luminous ring was 8000 leagues thick, and the distance between its interior surface and the centre of the head was 10,000 leagues. The latter comet was by much the most brilliant that has been seen in modern times; it was first discovered in this country by Mr. James Vietch of Inchbonny, and was observed in all its changes by Sir William Herschel and M. Olbers. To the naked eye, the head had the appearance of an ill-defined round mass of light, which was resolved into several distinct parts when viewed with a telescope. A very brilliant interior circular mass of nebulous matter was surrounded by a black space having a parabolic form, very distinct from the dark blue of the sky. This dark space was of a very appreciable breadth. Exterior to the black interval there was a luminous parabolic contour of considerable thickness, which was prolonged on each side in two

diverging branches, which formed the bifid tail of the comet. Sir William Herschel found that the brilliant interior circular mass lost the distinctness of its outline as he increased the magnifying power of the telescope, and presented the appearance of a more and more diffuse mass of greenish or blueish green light, whose intensity decreased gradually, not from the centre, but from an eccentric brilliant speck, supposed to be the truly solid part of the comet. The luminous envelope was of a decided yellow, which contrasted strongly with the greenish tint of the interior nebulous mass. Stars were nearly veiled by the luminous envelope, whilst, on the contrary, Sir William Herschel saw three extremely small stars shining clearly in the black space, which was singularly transparent. As the envelopes were formed in succession as the comet approached the sun, Sir William Herschel conceived them to be vapours raised by his heat at the surface of the nucleus, and suspended round it like a vault or dome by the elastic force of an extensive and highly transparent atmosphere. In coming to the sun, the coatings began to form when the comet was as distant as the orbit of Jupiter, and in its return they very soon entirely vanished; but a new one was formed after it had retreated as far as the orbit of Mars, which lasted for a few days. Indeed, comets in general are subject to sudden and violent convulsions in their interior, even when far from the sun, which produce changes that are visible at enormous distances, and baffle all attempts at explanation-probably arising from electricity, or even causes with which we are unacquainted. The envelopes surrounding the nucleus of the comet on the side next to the sun diverge on the opposite side, where they are prolonged into the form of a hollow cone, which is the tail. Two repulsive forces seem to be concerned in producing this effect; one from the comet and another from the sun, the latter being the most powerful. The envelopes are nearer the centre of the comet on the side next to the sun, where these forces are opposed to one another; but on the other side the forces conspire to form the tail, conveying the nebulous particles to enormous distances.

The lateral edges of the tail reflect more light than the central part, because the line of vision passes through a greater depth of nebulous matter, which produces the effect of two streams somewhat like the aurora. Stars shine with undiminished lustre through the central part of the tail, because their rays traverse it

perpendicularly to its thickness; but, though distinctly seen through its edges, their light is weakened by its oblique transmission. The tail of the great comet of 1811 was of wonderful tenuity; stars which would have been entirely concealed by the slightest fog were seen through 64,000 leagues of nebulous matter without the smallest refraction. Possibly some part of the changes in the appearance of the tails arises from rotation. Several comets have been observed to rotate about an axis passing through the centre of the tail. That of 1825 performed its rotation in 20 hours, and the rapid changes in the luminous sectors which issued from the nucleus of Halley's comet in all probability were owing to rotatory motion.

The two streams of light which form the edges of the tail in most cases unite at a greater or less distance from the nucleus, and are generally situate in the plane of the orbit. The tails follow comets in their descent towards the sun, but precede them in their return, with a small degree of curvature; their apparent extent and form vary according to the positions of the orbits with regard to the ecliptic. In some cases the tail has been at right angles to the line joining the sun and comet. The curvature is in part owing to the resistance of the ether, and partly to the velocity of the comet being greater than that of the particles at the extremity of its tail, which lag behind. The tails are gene

rally of enormous lengths; the comet of 1811 had one no less than a hundred millions of miles in length, and those which appeared in the years 1618, 1680, and 1769, had tails which extended respectively over 104, 90, and 97 degrees of space. Consequently, when the heads of these comets were set, a portion of the extremity of their tails was still in the zenith. Sometimes the tail is divided into several branches, like the comet of 1744, which had six, separated by dark intervals, each of them about 4° broad, and from 30° to 44° long. They were probably formed by three hollow cones of the nebulous matter proceeding from the different envelopes, and enclosing one another, with intervals between; the lateral edges of these cones would give the appearance of six streams of light. The tails do not attain their full magnitude till the comet has left the sun. When comets first appear, they resemble round films of vapour, with little or no tail. As they approach the sun, they increase in brilliancy, and their tail in length, till they are lost in his rays; and it is not

« PreviousContinue »