Page images
PDF
EPUB

Sir John Herschel at the Cape of Good Hope, show that the direct heating influence of the solar rays is greatest at the equator, and that it diminishes gradually as the latitude increases. At the equator the maximum is 4830, while in Europe it has never exceeded 2940.

M. Pouillet has estimated with singular ingenuity, from a series of observations made by himself, that the whole quantity of heat which the earth receives annually from the sun is such as would be sufficient to melt a stratum of ice covering the whole globe 46 feet deep. Part of this heat is radiated back into space; but by far the greater part descends into the earth during the summer, towards the zone of uniform temperature, whence it returns to the surface in the course of the winter, and tempers the cold of the ground and the atmosphere in its passage to the ethereal regions, where it is lost, or rather where it combines with the radiation from the other bodies of the universe in maintaining the temperature of space. The sun's power being greatest between the tropics, the heat sinks deeper there than elsewhere, and the depth gradually diminishes towards the poles; but the heat is also transmitted laterally from the warmer to the colder strata north and south of the equator, and aids in tempering the severity of the polar regions.

The mean heat of the earth, above the stratum of constant temperature, is determined from that of springs; and, if the spring be on elevated ground, the temperature is reduced by computation to what it would be at the level of the sea, assuming that the heat of the soil varies according to the same law as the beat of the atmosphere, which is about 1° of Fahrenheit's thermometer for every 333-7 feet. From a comparison of the temperature of numerous springs with that of the air, Sir David Brewster concludes that there is a particular line passing nearly through Berlin, at which the temperature of springs and that of the atmosphere coincide; that in approaching the arctic circle the temperature of springs is always higher than that of the air, while, proceeding towards the equator, it is lower.

Since the warmth of the superficial strata of the earth decreases from the equator to the poles, there are many places in both hemispheres where the ground has the same mean temperature. If lines were drawn through all those points in the upper strata of the globe which have the same mean annual tempera

ture, they would be nearly parallel to the equator between the tropics, and would become more and more irregular and sinuous towards the poles. These are called isogeothermal lines. A variety of local circumstances disturb their parallelism, even between the tropics.

The temperature of the ground at the equator is lower on the coasts and islands than in the interior of continents; the warmest part is in the interior of Africa; but it is obviously affected by the nature of the soil, especially if it be volcanic.

Much has been done to ascertain the manner in which heat is distributed over the surface of our planet, and the variations of climate, which, in a general view, mean every change of the atmosphere, such as of temperature, humidity, variations of barometric pressure, purity of air, the serenity of the heavens, the effects of winds, and electric tension. Temperature depends upon the property which all bodies possess, more or less, of perpetually absorbing and emitting or radiating heat. When the interchange is equal, the temperature of a body remains the same; but, when the radiation exceeds the absorption, it becomes colder, and vice versa. In order to determine the distribution of heat over the surface of the earth, it is necessary to find a standard by which the temperature in different latitudes may be compared. For that purpose it is requisite to ascertain, by experiment, the mean temperature of the day, of the month, and of the year, at as many places as possible throughout the earth. The annual average temperature may be found by adding the mean temperatures of all the months in the year, and dividing the sum by twelve. The average of ten or fifteen years will give it approximately; for, although the temperature in any place may be subject to very great variations, yet it never deviates more than a few degrees from its mean state, which consequently offers a good standard of comparison. As a standard, however, much greater accuracy is required.

If climate depended solely upon the heat of the sun, all places having the same latitude would have the same mean annual temperature. The motion of the sun in the ecliptic, indeed, occasions perpetual variations in the length of the day, and in the direction of the rays with regard to the earth; yet, as the cause is periodic, the mean annual temperature from the sun's motion alone must be constant in each parallel of latitude; for it is

evident that the accumulation of heat in the long days of summer, which is but little diminished by radiation during the short nights, is balanced by the small quantity of heat received during the short days in winter, and its radiation in the long, frosty, and clear nights. In fact, if the globe were everywhere on a level with the surface of the sea, and of uniform substance, so as to absorb and radiate heat equally, the mean heat of the sun would be regularly distributed over its surface in zones of equal annual temperature parallel to the equator, from which it would decrease to each pole as the square of the cosine of the latitude; and its quantity would only depend upon the altitude of the sun and atmospheric currents. The distribution of heat, however, in the same parallel, is very irregular in all latitudes except between the tropics, where the isothermal lines, or the lines passing through places of equal mean annual temperature, are more nearly parallel to the equator. The causes of disturbance are very numerous; but such as have the greatest influence, according to M. de Humboldt, to whom we are indebted for the greater part of what is known on the subject, are the elevation of the continents, the distribution of land and water over the surface of the globe exposing different absorbing and radiating powers; the variations in the surface of the land, as forests, sandy deserts, verdant plains, rocks, &c.; mountain-chains covered with masses of snow, which diminish the temperature; the reverberation of the sun's rays in the valleys, which increases it; and the interchange of currents, both of air and water, which mitigates the rigour of climates; the warm currents from the equator softening the severity of the polar frosts, and the cold currents from the poles tempering the intense heat of the equatorial regions. To these may be added cultivation, though its influence extends over but a small portion of the globe, only a fourth part of the land being inhabited.

Temperature decreases with the height above the level of the sea, as well as with the latitude. The air in the higher regions of the atmosphere is much cooler than that below, because the warm air expands as it rises, by which its capacity for heat is increased, a great proportion becomes latent or absorbed, and less of it sensible. A portion of air at the surface of the earth whose temperature is 70° of Fahrenheit, if carried to the height of two miles and a half, would expand so much that its temperature

would be reduced 50°; and in the ethereal regions the temperature is 239° below the zero point of Fahrenheit.

The height at which snow lies perpetually decreases from the equator to the poles, and is higher in summer than in winter; but it varies from many circumstances. Snow rarely falls when the cold is intense and the atmosphere dry. Extensive forests produce moisture by their evaporation; and high table-lands, on the contrary, dry and warm the air, because the air at great elevations is too rare to absorb much of the sun's heat. In the Cordilleras of the Andes, plains of only twenty-five square leagues from their extent raise the temperature as much as 30 or 4o above what is found at the same altitude on the rapid declivity of a mountain, consequently the line of perpetual snow varies according as one or other of these causes prevails. Aspect in general has also a great influence; yet the line of perpetual snow is much higher on the northern than on the southern side of the Himalaya, partly because the air is nearly deprived of its moisture by precipitation before it arrives at the northern side of the mountains. On the whole, it appears that the mean height between the tropics at which the snow lies perpetually is about 15,207 feet above the level of the sea; whereas snow does not cover the ground continually at the level of the ocean till near the north pole. In the southern hemisphere, however, the cold is greater than in the northern. In Sandwich Land, between the 54th and 58th degrees of latitude, perpetual snow and ice extend to the sea-level; and in the island of S. Georgia, in the 53rd degree of south latitude, which corresponds with the latitude of the central counties of England, perpetual snow descends even to the level of the ocean. It has been shown that this excess of cold in the southern hemisphere cannot be attributed to the winter being longer than ours by 7 days. It is probably owing to the open sea surrounding the south pole, which permits the icebergs to descend to a lower latitude by 10° than they do in the northern hemisphere, on account of the numerous obstructions opposed to them by the islands and continents about the north pole. Icebergs from the Arctic seas seldom float farther to the south than the Azores; whereas those that come from the south pole descend to as low a latitude as that of the Cape of Good Hope.

The influence of mountain-chains does not wholly depend upon the line of perpetual congelation. They attract and condense

M

the vapours floating in the air, and send them down in torrents of rain. They radiate heat into the atmosphere at a lower elevation, and increase the temperature of the valleys by the reflection of the sun's rays, and by the shelter they afford against prevailing winds. But, on the contrary, one of the most general and powerful causes of cold arising from the vicinity of mountains is the freezing currents of wind which rush from their lofty peaks along the rapid declivities, chilling the surrounding valleys such is the cutting north wind called the bise in Switzerland.

Next to elevation, the difference in the radiating and absorbing powers of the sea and land has the greatest influence in disturbing the regular distribution of heat. The extent of the dry land is not above the fourth part of that of the ocean; so that the general temperature of the atmosphere, regarded as the result of the partial temperatures of the whole surface of the globe, is most powerfully modified by the sea. Besides, the ocean acts more uniformly on the atmosphere than the diversified surface of the solid mass does, both by the equality of its curvature and its homogeneity. In opaque substances the accumulation of heat is confined to the stratum nearest the surface. The seas become less heated at their surface than the land, because the solar rays, before being extinguished, penetrate the transparent liquid to a greater depth and in greater numbers than in the opaque masses. On the other hand, water has a considerable radiating power, which, together with evaporation, would reduce the surface of the ocean to a very low temperature, if the cold particles did not sink to the bottom on account of their superior density. The seas preserve a considerable portion of the heat they receive in summer, and from their saltness do not freeze so soon as fresh water. So that, in consequence of all these circumstances, the ocean is not subject to such variations of heat as the land, and, by imparting its temperature to the winds and by its currents, it diminishes the rigour of climate on the coasts and in the islands, which are never subject to such extremes of heat and cold as are experienced in the interior of continents, though they are liable to fogs and rain from the evaporation of the adjacent seas. On each side of the equator to the 48th degree of latitude, the surface of the ocean is in general warmer than the air above it. The mean of the difference of the tem

« PreviousContinue »