Page images
PDF
EPUB

This may be verified by means of the Helmholtz equations (14), which are in fact the conditions of integrability referred to. The hydrodynamical equations are accordingly of the forms

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small]

where P is the pressure, is the potential of the ellipsoidal mass itself, and ' is that of disturbing bodies at a distance.

[merged small][merged small][merged small][ocr errors][merged small]

The disturbing potential ' can be expanded, for points in the neighbourhood of the origin, in a series of solid spherical harmonics of positive degree. The terms of the first order are without influence on the motion relative to the centre of mass, whilst terms of higher order than the second are usually negligible. We write, therefore,

n' =

..........

† (A'x2 + B′y2 + C'z2 + 2F'yz + 2G′zx + 2H'xy), .(53) the coefficients, which are known functions of the time, being subject to the relation A' + B′ + C′ = 0, in virtue of the equation v2′ = 0.

[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

In the equations (14), (44), (55), (56) we have a system of ten equations connecting the ten dependent variables a, b, c, p, q, r, P1, 91, 71, λ with the time.

It is to be noticed, however, that the equations (56) are precisely the equations which would be derived from (51) and (54) by expressing that the rates of increase of the angular momenta with respect to fixed axes coincident with the instantaneous positions of the axes of the ellipsoid are equal to the respective moments of the external forces. They are therefore equivalent to the system (13), where L, M, N may now be taken to refer to the disturbing forces alone, since the pressure-distribution given by (54) has zero moments about the axes. The direct identification of (56) with (13) is also not difficult.

Although it is not essential to our purpose, we may substitute the values of a, ß, y obtained from (48) in (55). Eliminating A, we get

aä a2 (q2 + r2 + q12 + r12) - 2caqqı

= bb

[ocr errors]

-

[ocr errors][subsumed]

b2 (r2 + p2 + r12 + P12) — 2abrr1 - 2bсрр1 + 2πph2 В。 + В'b2

2

c2 (p2 + q2 + P12 + 912) - 2bcpp1 - 2ca¶¶1 + 2πрc2уo + C'c2. ....(57) These, together with (13), (14), and (44), may be taken to be our fundamental system of equations.

So far there is no approximation, and the equations would be applicable, for instance, to the finite oscillations of a Jacobian ellipsoid under a disturbing potential of the type (53). In the case, however, of a slight disturbance from a state of steady rotation about

the axis of z, the quantities p, q, P1, 1, 71 will be small, whilst r will be approximately constant. It follows that, if we neglect small quantities of the second order in the first two of equations (13) and the first two of (14), the coefficients may be treated as constants. The precession is therefore independent of the tidal deformation, and is the same as if the fluid had been enclosed by a rigid envelope of negligible mass.

The tidal motions of 'semi-diurnal' and 'long-period' types, on the other hand, are determined by the equations (57), together with (44) and the third equations of the systems (13) and (14), respectively. These latter, it may be noted, take the forms

[blocks in formation]

When the undisturbed ellipsoid is one of revolution about the axis of z, the precessional equations reduce as before to the forms (20) and (21). Moreover, in the astronomical application, that part of the disturbing potential which is effective as regards precession consists of terms of the form

Ω =

kr2 sin cos e cos (σt + ),

.(59)

where σ is nearly equal to w; cf. Art. 219 (1) and p. 348. In Cartesian co-ordinates we have

[blocks in formation]

The argument, leading to the conclusion that the precession is, under a certain condition, the same as if the mass had been solid, then takes the same course as in the preceding Art.

Having regard to the form of ′ in (59), our solution may be regarded from another point of view as a determination of the 'diurnal' tides. In the present problem these cannot be discriminated from 'precession,' which is merely the name for their secular aspect.

[blocks in formation]

Barnes, H. T., 592

Barnes and Coker, 652

Basset, A. B., 127, 150, 175, 226, 591, 617, 635,

678, 684, 687, 692, 694

Beltrami, E., 81, 85, 142
Bernoulli, D., 20, 23, 349
Bertrand, J., 177
Bessel, F. W., 127
Bjerknes, C. A., 127, 142
Bjerknes, V., 127

Blasius, H., 86, 653, 667
Bobyleff, D., 96, 575
Bohr, N., 448

Boltzmann, L., 101, 192
Borchhardt, C. W., 584, 585
Borda, J. C., 24

Boussinesq, J., 415, 417, 580
Boys, C. V., 668
Brioschi, F., 692

Bromwich, T. J. I'a, 287, 445
Bryan, G. H., 111, 174, 689
Burkhardt, H., 59

Burnside, W., 368, 383

Byerly, W. E., 103

[blocks in formation]

Darwin, Sir G. H., 141, 274, 323, 327, 328, 329,
330, 342, 349, 350, 631, 675, 680, 686, 687
Dedekind, R., 689, 693

Delaunay, C., 562

De Morgan, A., 288, 393

Dinnick, A., 498

Dirichlet, P. L., 116, 304, 392, 593, 689, 691, 692
Dyson, Sir F. W., 150, 238, 678

Earnshaw, S., 478

Edwardes, D., 595

Eiffel, G., 665

Ekman, V. W., 361, 408, 430, 652

Encke, J. F., 611

Euler, L., 2, 5, 500

Everett, J. D., 473

[blocks in formation]

Hadamard, J., 344, 482, 589

Hadley, G., 300

Hamilton, Sir W. R., 177, 178, 370

Hankel, H., 33, 285, 287

Hanlon, G. O., 24

Hansen, P. A., 128

Harris, R. A., 72

Harrison, W. J., 581, 615

Havelock, T. H., 370, 388, 408, 430, 456
Hayward, R. B., 154

Heaviside, O., 203, 290

Heine, E., 103, 130, 131, 133, 498, 506, 525
Helmholtz, H. von, 21, 52, 71, 86, 88, 100,
178, 186, 194, 203, 207, 274, 342, 365, 409,
420, 421, 471, 491, 492, 571, 607, 608, 629
Hermann, R. A., 127

Hicks, W. M., 84, 127, 142, 150, 183, 216, 238,
691

Hilbert, D., 241

Hill, M. J. M., 227, 237, 239

Hobson, E. W., 131, 423, 542

Hosking, R., 571

Hough, S., 335, 337, 554, 613, 617, 694, 696,

698

Hugoniot, A., 25, 482

Jacobi, C. G. J., 113, 143, 674

Jahnke and Emde, 108

Jeans, J. H., 687

Jeffery, G. B., 595

Joukowski, N., 666

[blocks in formation]

Kármán, T. von, 219, 665

Kelland, P., 247, 440

Kelvin, Lord, 7, 31, 33, 34, 37, 45, 99, 142,

143, 154, 158, 160, 171, 174, 175, 183, 188,
191, 192, 193, 194, 199, 203, 216, 224, 233,
238, 308, 310, 311, 323, 325, 333, 334, 365,
385, 396, 399, 401, 407, 427, 430, 443, 445,
451, 452, 455, 462, 542, 555, 562, 620, 654,
655, 658, 664, 694, 698

Kirchhoff, G., 37, 38, 52, 78, 86, 92, 94, 95,

100, 101, 102, 151, 158, 165, 170, 192, 197,
223, 226, 435, 488, 489, 494, 505, 517, 582,

593, 633, 635, 636, 637, 639, 641

Kirchhoff and Hansemann, 436
Klein and Sommerfeld, 344

Knibbs, G. H., 651

Koch, S., 571

Korteweg, D. J., 345, 608

Korteweg and De Vries, 418, 471
Kowalewski, Mme Sophie, 678
Kutta, W. M., 77, 86, 666

[blocks in formation]

Lamé, G., 143, 145

Lanchester, F. W., 666, 668

Laplace, P. S., 105, 113, 298, 318, 320, 333,
334, 343, 344, 346, 349, 472, 499, 672, 677
Larmor, Sir J., 59, 154, 163, 171, 186, 193, 235,
492, 494, 531

Leathem, J. G., 46, 202
Lees, C. H., 654

Legendre, A. M., 108, 506

Levi-Civita, T., 98, 290

Lewis, T. C., 235

Liapounoff, A., 344

Liouville, J., 487, 674

[blocks in formation]

Michell, J. H., 98, 411, 431

Minchin, G. M., 227

Morrow, J., 654

Morton, W. B., 86

Murphy, R., 108

Nagaoka, H., 227, 228

Nanson, E. J., 197, 198, 199

Navier, C. L. M. H., 573

Neumann, C., 63, 127, 128, 150, 188

Newton, Sir I., 472, 581

Nielsen, N., 128, 129, 286

Niven, C., 517

Niven, Sir W. D., 141
Noether, F., 596

Oberbeck, A., 585, 594

Orr, W. McF., 658, 659, 664
Oseen, C. W., 596
Ostrogradsky, M. A., 433

Pedersen, P. O., 448
Perry, J., 108

Pidduck, F. B., 384
Piotrowski, G. von, 579

Planck, M., 87

Pockels, F., 491

Pocklington, H. C., 238

Poincaré, H., 141, 199, 245, 283, 305, 341,
540, 678, 680, 683, 684, 686, 687, 688, 694,
698

Poiseuille, J. L. M., 578

Poisson, S. D., 17, 127, 281, 287, 360, 373, 383,
424, 433, 479, 487, 488, 505, 538, 573
Popoff, A., 389

Prandtl, L., 667
Priestley, H. J., 410
Proudman, J., 315, 343

Rankine, W. J. M., 61, 79, 122, 412, 479, 653
Rasmussen, A., 432

Rayleigh, Lord, 38, 77, 92, 94, 95, 96, 110,

131, 241, 245, 253, 266, 272, 274, 279, 281,
282, 294, 298, 299, 305, 311, 341, 343, 350,
359, 365, 366, 368, 370, 372, 375, 384, 389,
409, 410, 412, 415, 433, 435, 436, 437, 448,
451, 453, 457, 462, 463, 466, 467, 473, 476,
481, 482, 484, 485, 488, 491, 500, 501, 503,
505, 506, 508, 510, 513, 516, 523, 524, 526,
527, 529, 535, 538, 551, 556, 563, 582, 588,
595, 604, 607, 608, 610, 611, 620, 635, 641,

653, 654, 656, 658, 660, 665
Réthy, M., 96

Reusch, E., 234

Reynolds, O., 22, 25, 234, 372, 571, 581, 621,

651, 660

Riecke, E., 216

Riemann, B., 52, 270, 476, 687, 689
Rota, G., 432

Routh, E. J., 186, 218, 241, 245, 304, 556, 566
Russell, J. Scott, 369, 415, 462, 465, 620
Rybczynski, W., 589

de Saint-Venant, B., 573

de Saint-Venant and Wantzel, 25

Sampson, R. A., 119, 595

Schlömilch, O., 393

Schwarz, H. A., 78

Schwarzschild, K., 680

Schwerd, 500

Sewell, C. J. T., 645, 647

Sharpe, F. R., 664

Shaw, H. J. S. Hele, 82, 577

Simpson, T., 672

Smith, B. A., 286

Smoluchowski, M., 100, 589

Sommerfeld, A., 59, 491, 535, 581, 659

Stanton, T. E., 665, 668

Stanton and Pannell, 653

Stearn, H. T., 636

Stefan, J., 120

Stekloff, W., 692

Stokes, Sir G. G., 16, 29, 33, 84, 116, 118, 119,
122, 125, 197, 199, 201, 204, 236, 237, 251,
277, 287, 288, 363, 370, 385, 409, 410, 412,
414, 418, 419, 438, 439, 473, 479, 480, 484,
499, 502, 503, 525, 572, 573, 575, 577, 581,
582, 587, 588, 591, 609, 610, 614, 620, 635,
637, 653, 660

Sylvester, J. J., 105

Tait, P. G., 234, 618
Tarleton, R. A., 216
Taylor, G. I., 483
Tedone, O., 199, 692
Thomson, J., 24

Thomson, Sir J. J., 78, 209, 212, 238, 595
Thomson, Sir W., see Kelvin

Thomson and Tait, 33, 44, 45, 84, 103, 105,

106, 113, 128, 151, 156, 160, 165, 175, 181,
186, 193, 231, 241, 299, 301, 305, 342, 347,
349, 374, 556, 585, 593, 670, 674, 685

Tisserand, F., 672, 680

Todhunter, I., 103, 672
Tomlinson, H., 571

Töpler, A., 101
Torricelli, E., 23
Turner, H. H., 349

Unwin, W. C., 653

Voigt, W., 127, 199

Wangerin, A., 103, 112, 141

Webb, R. R., 363, 467

Weber, H., 15, 129, 131, 132, 490, 523

Whetham, W. C. D., 579

Whittaker, E. T., 103, 186, 245
Wien, W., 162, 401, 409
Williams, W. E., 587
Wilton, J. R., 410, 411

Yarrow, H., 432

Young, T., 244, 258, 260

Zahm, A. F., 668
Zemplén, G., 582
Zöppritz, K., 613

« PreviousContinue »