Page images
PDF
EPUB

ation of man. In 6468, the major axis will again coincide with the line of the equinoxes; but then the solar perigee will coincide with the equinox of spring, whereas at the creation of man it coincided with the autumnal equinox. In the year 1234, the major axis was perpendicular to the line of the equinoxes; then the solar perigee coincided with the solstice of winter, and the apogee with the solstice of summer. According to La Place, who computed these periods from different data, the last coincidence happened in the year 1250 of our era, which induced him to propose that year as a universal epoch, the vernal equinox of the year 1250 to be the first day of the first year.

The variation in the position of the solar ellipse occasions corresponding changes in the length of the seasons. In its present position, spring is shorter than summer, and autumn longer than winter; and while the solar perigee continues as it now is, between the solstice of winter and the equinox of spring, the period including spring and summer will be longer than that including autumn and winter. In this century, the difference is between seven and eight days. The intervals will be equal towards the year 6468, when the perigee coincides with the equinox of spring; but when it passes that point, the spring and summer, taken together, will be shorter than the period including the autumn and winter.1 These changes will be accomplished in a tropical revolution of the major axis of the earth's orbit, which includes an interval of 20,937 years. Were the orbit circular, the seasons would be equal; their difference arises from the excentricity of the orbit, small as it is; but the changes are so trifling, as to be imperceptible in the short space of human life.

1 Note 145.

No circumstance in the whole science of astronomy excites a deeper interest than its application to chronology. "Whole nations," says La Place," have been swept from the earth, with their languages, arts, and sciences, leaving but confused masses of ruins to mark the place where mighty cities stood; their history, with the exception of a few doubtful traditions, has perished; but the perfection of their astronomical observations marks their high antiquity, fixes the periods of their existence, and proves that, even at that early time, they must have made considerable progress in science." The ancient state of the heavens may now be computed with great accuracy; and by comparing the results of computation with ancient observations, the exact period at which they were made, may be verified if true, or, if false, their error may be detected. If the date be accurate, and the observation good, it will verify the accuracy of modern tables, and will show to how many centuries they may be extended, without the fear of error. A few examples will show the importance of the subject.

At the solstices the sun is at his greatest distance from the equator, consequently his declination at these times is equal to the obliquity of the ecliptic, which, formerly, was determined from the meridian length of the shadow of the stile of a dial on the day of the solstice. The lengths of the meridian shadow at the summer and winter solstice are recorded to have been observed at the city of Layang, in China, 1100 years before the Christian era. From these, the distances of the sun from the zenith2 of the city of Layang are known. Half the sum of these zenith distances determines the latitude, and half their difference gives the obliquity of the ecliptic at the period of the observation;

and as the law of the variation of the obliquity is known, both the time and place of the observations have been verified by computations from modern tables. Thus the Chinese had made some advances in the science of astronomy at that early period. Their whole chronology is founded on the observation of eclipses, which prove the existence of that empire for more than 4700 years. The epoch of the lunar tables of the Indians, supposed by Bailly to be 3000 years before the Christian era, was proved by La Place, from the acceleration of the moon, not to be more ancient than the time of Ptolemy, who lived in the second century after it. The great inequality of Jupiter and Saturn, whose cycle embraces 918 years, is peculiarly fitted for marking the civilisation of a people. The Indians had determined the mean motions of these two planets in that part of their periods, when the apparent mean motion of Saturn was at the slowest, and that of Jupiter the most rapid. The periods in which that happened was 3102 years before the Christian era, and the year 1491 after it. The returns of comets to their perihelia may possibly mark the present state of astronomy to future ages.

The places of the fixed stars are affected by the precession of the equinoxes; and as the law of that variation is known, their positions at any time may be computed. Now Eudoxus, a contemporary of Plato, mentions a star situate in the pole of the equator, and it appears from computation, that x Draconis was not very far from that place about 3000 years ago; but as it is only about 2150 years since Eudoxus lived, he must have described an anterior state of the heavens, supposed to be the same that was mentioned by Chiron, about the time of the siege of Troy. Every circumstance concurs

in showing that astronomy was cultivated in the highest ages of antiquity.

It is possible that a knowledge of astronomy may lead to the interpretation of hieroglyphical characters. Astronomical signs are often found on the ancient Egyptian monuments, probably employed by the priests to record dates. The author had occasion to witness an instance of this most interesting application of astronomy, in ascertaining the date of a papyrus, sent from Egypt by Mr. Salt, in the hieroglyphical researches of the late Dr. Thomas Young, whose profound and varied acquirements do honour to his country and to the age in which he lived. The manuscript was found in a mummy-case; it proved to be a horoscope of the age of Ptolemy, and its antiquity was determined from the configuration of the heavens at the time of its construction.

The form of the earth furnishes a standard of weights and measures for the ordinary purposes of life, as well as for the determination of the masses and distances of the heavenly bodies. The length of the pendulum vibrating seconds of mean solar time, in the latitude of London, forms the standard of the British measure of extension. Its length oscillating in vacuo at the temperature of 62° of Fahrenheit, and reduced to the level of the sea1, was determined, by Captain Kater, to be 39-1392 inches. The weight of a cubic inch of water at the temperature of 62° of Fahrenheit, barometer 30 inches, was also determined in parts of the imperial troy pound, whence a standard both of weight and capacity is deduced. The French have adopted the mètre, equal to 3.2808992 English feet, for their unit of linear

measure, which is the ten-millionth part of that quadrant of the meridian1 passing through Formentera and Greenwich, the middle of which is nearly in the forty-fifth degree of latitude. Should the national standards of the two countries be lost in the vicissitude of human affairs, both may be recovered, since they are derived from natural standards presumed to be invariable. The length of the pendulum would be found again with more facility than the mètre. But as no measure is mathematically exact, an error in the original standard may at length become sensible in measuring a great extent, whereas the error that must necessarily arise in measuring the quadrant of the meridian is rendered totally insensible by subdivisions, in taking its ten-millionth part. The French have adopted the decimal division, not only in time, but in their degrees, weights, and measures, on account of the very great facility it affords in computation. It has not been adopted by any other people, though nothing is more desirable than that all nations should concur in using the same division and standards, not only on account of convenience, but as affording a more definite idea of quantity. It is singular that the decimal division of the day, of degrees, weights, and measures, was employed in China 4000 years ago; and that at the time Ibn Junis made his observations at Cairo, about the year 1000 of the Christian era, the Arabs were in the habit of employing the vibrations of the pendulum in their astronomical observations as a measure of time.

1 Note 149.

« PreviousContinue »