Page images
PDF
EPUB

to increase, from the equator to the pole, as the square of the sine of the latitude; but for a spheroid in rotation, by the laws of mechanics the centrifugal force varies as the square of the sine of the latitude from the equator where it is greatest, to the pole where it vanishes; and as it tends to make bodies fly off the surface, it diminishes the effects of gra vity by a small quantity. Hence by gravitation, which is the difference of these two forces, the fall of bodies ought to be accelerated in going from the equator to the poles, proportionably to the square of the sine of the latitude; and the weight of the same body ought to increase in that ratio. This is directly proved by the oscillations of the pendulum; for if the fall of bodies be accelerated, the oscillations will be more rapid; and that they may always be performed in the same time, the length of the pendulum must be altered. Now, by numerous and very careful experiments, it is proved that a pendulum, which makes 86400 oscillations in a mean day at the equator, will do the same at every point of the earth's surface, if its length be increased in going to the pole, as the square of the sine of the latitude. From the mean of these it appears that the compression of the terrestrial spheroid is about, which does not differ much from that given by the lunar inequalities, and from the arcs of the meridian. The near coincidence of these three values, deduced by methods so entirely independent of each other, shows that the mutual tendencies of the centres of the celestial bodies to one another, and the attraction of the earth for bodies at its surface, result from the reciprocal attraction of all their particles. Another proof may be added; the nutation of the earth's axis, and the precession of the equinoxes, are occasioned by the action of the sun and moon on the protuberant matter at the earth's equator; and although these inequalities do not give the absolute value of the terrestrial compression, they show that the fraction expressing it is comprised between the limits y and y

It might be expected that the same compression should result from each, if the different methods of observation could be made without error. This, however, is not the case; for such discrepancies are found both in the degrees of the me

ridian and in the length of the pendulum, as show that the figure of the earth is very complicated; but they are so small when compared with the general results, that they may be disregarded. The compression deduced from the mean of the whole, appears to be about; that given by the lunar theory has the advantage of being independent of the irregularities at the earth's surface, and of local attractions. The form and size of the earth being determined, it furnishes a standard of measure with which the dimensions of the solar system may be compared.

The parallax of a celestial body is the angle under which the radius of the earth would be seen if viewed from the centre of that body; it affords the means of ascertaining the distances of the sun, moon, and planets. Suppose that, when the moon is in the horizon at the instant of rising or setting, lines were drawn from her centre to the spectator and to the centre of the earth, these would form a right-angled triangle with the terrestrial radius, which is of a known length; and as the parallax or angle at the moon can be measured, all the angles and one side are given; whence the distance of the moon from the centre of the earth may be computed. The parallax of an object may be found, if two observers under the same meridian, but at a very great distance from one another, observe its zenith distances on the same day at the time of its passage over the meridian. By such contemporaneous observations at the Cape of Good Hope and at Berlin, the mean horizontal parallax of the moon was found to be 3454".2; whence the mean distance of the moon is about sixty times the mean terrestrial radius, or 240000 miles nearly. Since the parallax is equal to the radius of the earth divided by the distance of the moon; under the same parallel of latitude it varies with the distance of the moon from the earth, and proves the ellipticity of the lunar orbit; and when the moon is at her mean distance, it varies with the terrestrial radii, thus showing that the earth is not a sphere.

Although the method described is sufficiently accurate for finding the parallax of an object so near as the moon, it will not answer for the sun which is so remote, that the smallest error in observation would lead to a false result; but by the

transits of Venus that difficulty is obviated. When that planet is in her nodes, or within 11° of them, that is, in, or nearly in the plane of the ecliptic, she is occasionally seen to pass over the sun like a black spot. If we could imagine that the sun and Venus had no parallax, the line described by the planet on his disc, and the duration of the transit, would be the same to all the inhabitants of the earth; but as the sun is not so remote but that the semidiameter of the earth has a sensible magnitude when viewed from his centre, the line described by the planet in its passage over his disc appears to be nearer to his centre or farther from it, according to the position of the observer; so that the duration of the transit varies with the different points of the earth's surface at which it is observed. This difference of time, being entirely the effect of parallax, furnishes the means of computing it from the known motions of the earth and Venus, by the same method as for the eclipses of the sun. In fact the ratio of the distances of Venus and the sun from the earth at the time of the transit, are known from the theory of their elliptical motion; consequently, the ratio of the parallaxes of these two bodies, being inversely as their distances, is given; and as the transit gives the difference of the parallaxes, that of the sun is obtained. In 1769, the parallax of the sun was determined by observations of a transit of Venus made at Wardhus in Lapland, and at Otaheite in the South Sea, the latter observation being the object of Cook's first voyage. The transit lasted about six hours at Otaheite, and the difference in the duration at these two stations was eight minutes; whence the sun's parallax was found to be 8".72: but by other considerations it has subsequently been reduced to 8".575; from which the mean distance of the sun appears to be about 95996000, or ninety-six millions of miles nearly. This is confirmed by an inequality in the motion of the moon, which depends on the parallax of the sun, and which when compared with observation gives 8".6 for the sun's parallax.

The parallax of Venus is determined by her transits, that of Mars by direct observation. The distances of these two planets from the earth are therefore known in terrestrial radii; consequently their mean distances from the sun may be computed;

and as the ratios of the distances of the planets from the sun are known by Kepler's law, their absolute distances in miles are easily found.

Far as the earth seems to be from the sun, it is near to him when compared with Uranus; that planet is no less than 1843 millions of miles from the luminary that warms and enlivens the world; to it, situate on the verge of the system, the sun must appear not much larger than Venus does to us. The earth cannot even be visible as a telescopic object to a body so remote; yet man, the inhabitant of the earth, soars beyond the vast dimensions of the system to which his planet belongs, and assumes the diameter of its orbit as the base of a triangle, whose apex extends to the stars.

Sublime as the idea is, this assumption proves ineffectual, for the apparent places of the fixed stars are not sensibly changed by the earth's annual revolution; and with the aid derived from the refinements of modern astronomy and the most perfect instruments, it is still a matter of doubt whether a sensible parallax has been detected, even in the nearest of these remote suns. If a fixed star had the parallax of one second, its distance from the sun would be 20500000 millions of miles. At such a distance not only the terrestrial orbit shrinks to a point, but, where the whole solar system, when seen in the focus of the most powerful telescope, might be covered by the thickness of a spider's thread. Light, flying at the rate of 200000 miles in a second, would take three years and seven days to travel over that space; one of the nearest stars may therefore have been kindled or extinguished more than three years before we could have been aware of so mighty an event. But this distance must be small when compared with that of the most remote of the bodies which are visible in the heavens. The fixed stars are undoubtedly luminous like the sun; it is therefore probable that they are not nearer to one another than the sun is to the nearest of them. In the milky way and the other starry nebulæ, some of the stars that seem to us to be close to others, may be far behind them in the boundless depth of space; nay, may rationally be supposed to be situate many thousand times further off: light would therefore require thousands of years to come to the earth from those myriads of suns, of which our own is but the dim and remote companion.'

The masses of such planets as have no satellites are known by comparing the inequalities they produce in the motions of the earth and of each other, determined theoretically, with the same inequalities given by observation, for the disturbing cause must necessarily be proportional to the effect it produces. But as the quantities of matter in any two primary planets are directly as the cubes of the mean distances at which their satellites revolve, and inversely as the squares of their periodic times, the mass of the sun and of any planets which have satellites, may be compared with the mass of the earth. In this manner it is computed that the mass of the sun is 354936 times greater than that of the earth; whence the great perturbations of the moon and the rapid motion of the perigee and nodes of her orbit. Even Jupiter, the largest of the planets, is 1070.5 times less than the sun. The mass of the moon is determined from four different sources,-from her action on the terrestrial equator, which occasions the nutation in the axis of rotation; from her horizontal parallax, from an inequality she produces in the sun's longitude, and from her action on the tides. The three first quantities, computed from theory, and compared with their observed values, give her mass respectively equal to the, and part of that of the earth, which do not differ very much from each other; but, from her action in raising the tides, which furnishes the fourth method, her mass appears to be about the seventy-fifth part of that of the earth, a value that cannot differ much from the truth.

2

1

69.2

The apparent diameters of the sun, moon, and planets are determined by measurement; therefore their real diameters may be compared with that of the earth; for the real diameter of a planet is to the real diameter of the earth, or 8000 miles, as the apparent diameter of the planet to the apparent diameter of the earth as seen from the planet, that is, to twice the parallax of the planet. The mean apparent diameter of the sun is 1920", and with the solar parallax 8".65, it will be found that the diameter of the sun is about 888000 miles; therefore,

the centre of the sun were to coincide with the centre of the earth, his volume would not only include the orbit of the moon, but would extend nearly as far again, for the moon's

« PreviousContinue »