Page images
PDF
EPUB

of bodies, or of particles revolving about a fixed centre, that the momentum, or sum of the products of the mass of each into its angular velocity and distance from the centre is a constant quantity, if the system be not deranged by an external cause. Now since the number of particles in the system is the same whatever its temperature may be, when their distances from the centre are diminished, their angular velocity must be increased in order that the preceding quantity may still remain constant. It follows then, that as the primitive momentum of rotation with which the earth was projected into space must necessarily remain the same, the smallest decrease in heat, by contracting the terrestrial spheroid, would accelerate its rotation, and consequently diminish the length of the day. Notwithstanding the constant accession of heat from the sun's rays, geologists have been induced to believe from the nature of fossil remains, that the mean temperature of the globe is decreasing.

The high temperature of mines, hot springs, and above all, the internal fires that have produced, and do still occasion such devastation on our planet, indicate an augmentation of heat towards its centre; the increase of density in the strata corresponding to the depth and the form of the spheroid, being what theory assigns to a fluid mass in rotation, concur to induce the idea that the temperature of the earth was originally so high as to reduce all the substances of which it is composed to a state of fusion, and that in the course of ages it has cooled down to its present state; that it is still becoming colder, and that it will continue to do so, till the whole mass arrives at the temperature of the medium in which it is placed, or rather at a state of equilibrium between this temperature, the cooling power of its own radiation, and the heating effect of the sun's rays. But even if this cause be sufficient to produce the observed effects, it must be extremely slow in its operation; for in consequence of the rotation of the earth being a measure of the periods of the celestial motions, it has been proved, that if the length of the day had decreased by the three hundredth part of a second since the observations of Hipparchus two thousand years ago, it would have diminished the secular

d

equation of the moon by 4".4. It is therefore beyond a doubt, that the mean temperature of the earth cannot have sensibly varied during that time; if then the appearances exhibited by the strata are really owing to a decrease of internal temperature, it either shows the immense periods requisite to produce geological changes to which two thousand years are as nothing, or that the mean temperature of the earth had arrived at a state of equilibrium before these observations. However strong the indications of the primitive fluidity of the earth, as there is no direct proof, it can only be regarded as a very probable hypothesis; but one of the most profound philosophers and elegant writers of modern times has found, in the secular variation of the eccentricity of the terrestrial orbit, an evident cause of decreasing temperature. That accomplished author, in pointing out the mutual dependences of phenomena, says—' It is evident that the mean temperature of the whole surface of the globe, in so far as it is maintained by the action of the sun at a higher degree than it would have were the sun extinguished, must depend on the mean quantity of the sun's rays which it receives, or, which comes to the same thing, on the total quantity received in a given invariable time: and the length of the year being unchangeable in all the fluctuations of the planetary system, it follows, that the total amount of solar radiation will determine, cæteris paribus, the general climate of the earth. Now it is not difficult to show, that this amount is inversely proportional to the minor axis of the ellipse described by the earth about the sun, regarded as slowly variable; and that, therefore, the major axis remaining, as we know it to be, constant, and the orbit being actually in a state of approach to a circle, and consequently the minor axis being on the increase, the mean annual amount of solar radiation received by the whole earth must be actually on the decrease. We have, therefore, an evident real cause to account for the phenomenon.' The limits of the variation in the eccentricity of the earth's orbit are unknown; but if its ellipticity has ever been as great as that of the orbit of Mercury or Pallas, the mean temperature of the earth must have been sensibly higher than it is at present; whether it was great enough to render our

northern climates fit for the production of tropical plants, and for the residence of the elephant, and the other inhabitants of the torrid zone, it is impossible to say.

The relative quantity of heat received by the earth at different moments during a single revolution, varies with the position of the perigee of its orbit, which accomplishes a tropical revolution in 20935 years. In the year 1250 of our era, and 29653 years before it, the perigee coincided with the summer solstice; at both these periods the earth was nearer the sun during the summer, and farther from him in the winter than in any other position of the apsides: the extremes of temperature must therefore have been greater than at present; but as the terrestrial orbit was probably more elliptical at the distant epoch, the heat of the summers must have been very great, though possibly compensated by the rigour of the winters; at all events, none of these changes affect the length of the day.

It appears from the marine shells found on the tops of the highest mountains, and in almost every part of the globe, that immense continents have been elevated above the ocean, which must have engulphed others. Such a catastrophe would be occasioned by a variation in the position of the axis of rotation on the surface of the earth; for the seas tending to the new equator would leave some portions of the globe, and overwhelm others.

But theory proves that neither nutation, precession, nor any of the disturbing forces that affect the system, have the smallest influence on the axis of rotation, which maintains a permanent position on the surface, if the earth be not disturbed in its rotation by some foreign cause, as the collision of a comet which may have happened in the immensity of time. Then indeed, the equilibrium could only have been restored by the rushing of the seas to the new equator, which they would continue to do, till the surface was every where perpendicular to the direction of gravity. But it is probable that such an accumulation of the waters would not be sufficient to restore equilibrium if the derangement had been great; for the mean density of the sea is only about a fifth part of the mean density of the earth, and the mean depth even of the Pacific ocean is not

more than four miles, whereas the equatorial radius of the earth exceeds the polar radius by twenty-five or thirty miles; consequently the influence of the sea on the direction of gravity is very small; and as it appears that a great change in the position of the axes is incompatible with the law of equilibrium, the geological phenomena must be ascribed to an internal cause. Thus amidst the mighty revolutions which have swept innumerable races of organized beings from the earth, which have elevated plains, and buried mountains in the ocean, the rotation of the earth, and the position of the axis on its surface, have undergone but slight variations.

It is beyond a doubt that the strata increase in density from the surface of the earth to its centre, which is even proved by the lunar inequalities; and it is manifest from the mensuration of arcs of the meridian and the lengths of the seconds pendulum that the strata are elliptical and concentric. This certainly would have happened if the earth had originally been fluid, for the denser parts must have subsided towards the centre, as it approached a state of equilibrium; but the enormous pressure of the superincumbent mass is a sufficient cause for these phenomena. Professor Leslie observes, that air compressed into the fiftieth part of its volume has its elasticity fifty times augmented; if it continue to contract at that rate, it would, from its own incumbent weight, acquire the density of water at the depth of thirty-four miles. But water itself would have its density doubled at the depth of ninety-three miles, and would even attain the density of quicksilver at a depth of 362 miles. In descending therefore towards the centre through 4000 miles, the condensation of ordinary materials would surpass the utmost powers of conception. But a density so extreme is not borne out by astronomical observation. It might seem therefore to follow, that our planet must have a widely cavernous structure, and that we tread on a crust or shell, whose thickness bears a very small proportion to the diameter of its sphere. Possibly too this great condensation at the central regions may be counterbalanced by the increased elasticity due to a very elevated temperature. Dr. Young says that steel would be compressed into one-fourth, and stone into one-eighth of its bulk at the earth's centre. However we are yet ignorant of

the laws of compression of solid bodies beyond a certain limit; but, from the experiments of Mr. Perkins, they appear to be capable of a greater degree of compression than has generally been imagined.

It appears then, that the axis of rotation is invariable on the surface of the earth, and observation shows, that were it not for the action of the sun and moon on the matter at the equator, it would remain parallel to itself in every point of its orbit.

The attraction of an exterior body not only draws a spheroid towards it; but, as the force varies inversely as the square of the distance, it gives it a motion about its centre of gravity, unless when the attracting body is situated in the prolongation of one of the axes of the spheroid.

The plane of the equator is inclined to the plane of the ecliptic at an angle of about 23° 28', and the inclination of the lunar orbit on the same is nearly 5°; consequently, from the oblate figure of the earth, the sun and moon acting obliquely and unequally on the different parts of the terrestrial spheroid, urge the plane of the equator from its direction, and force it to move from east to west, so that the equinoctial points have a slow retrograde motion on the plane of the ecliptic of about 50".412 annually. The direct tendency of this action would be to make the planes of the equator and ecliptic coincide; but in consequence of the rotation of the earth, the inclination of the two planes remains constant, as a top in spinning preserves the same inclination to the plane of the horizon. Were the earth spherical this effect would not be produced, and the equinoxes would always correspond to the same points of the ecliptic, at least as far as this kind of action is concerned. But another and totally different cause operates on this motion, which has already been mentioned. The action of the planets on one another and on the sun, occasions a very slow variation in the position of the plane of the ecliptic, which affects its inclination on the plane of the equator, and gives the equinoctial points a slow but direct motion on the ecliptic of 0".312 annually, which is entirely independent of the figure of the earth, and would be the same if it were a sphere. Thus the sun and moon, by moving the plane of the equator, cause the equinoctial points

« PreviousContinue »