Page images

moved in a resisting medium, for then both the eccentricity and the major axes of the orbits would vary with the time, so that the stability of the system would be ultimately destroyed. But if the planets do move in an ethereal medium, it must be of extreme rarity, since its resistance has hitherto been quite insensible.

Three circumstances have generally been supposed necessary to prove the stability of the system: the small eccentricities of the planetary orbits, their small inclinations, and the revolution of all the bodies, as well planets as satellites, in the same direction. These, however, are not necessary conditions: the periodicity of the terms in which the inequalities are expressed is sufficient to assure us, that though we do not know the extent of the limits, nor the period of that grand cycle which probably embraces millions of years, yet they never will exceed what is requisite for the stability and harmony of the whole, for the preservation of which every circumstance is so beautifully and wonderfully adapted.

The plane of the ecliptic itself, though assumed to be fixed at a given epoch for the convenience of astronomical computation, is subject to a minute secular variation of 52".109, occasioned by the reciprocal action of the planets; but as this is also periodical, the terrestrial equator, which is inclined to it at an angle of about 23° 28′, will never coincide with the plane of the ecliptic; so there never can be perpetual spring. The rotation of the earth is uniform; therefore day and night, summer and winter, will continue their vicissitudes while the system endures, or is untroubled by foreign causes.

Yonder starry sphere

Of planets, and of fix'd, in all her wheels
Resembles nearest, mazes intricate,

Eccentric, intervolved, yet regular

Then most, when most irregular they seem.

The stability of our system was established by La Grange, 'a discovery,' says Professor Playfair, that must render the name for ever memorable in science, and revered by those who delight in the contemplation of whatever is excellent and sublime. After Newton's discovery of the elliptical orbits of the planets, La Grange's discovery of their periodical inequalities is without doubt the noblest truth in physical astronomy; and,

in respect of the doctrine of final causes, it may be regarded as the greatest of all.'

Notwithstanding the permanency of our system, the secular variations in the planetary orbits would have been extremely embarrassing to astronomers, when it became necessary to compare observations separated by long periods. This difficulty is obviated by La Place, who has shown that whatever changes time may induce either in the orbits themselves, or in the plane of the ecliptic, there exists an invariable plane passing through the centre of gravity of the sun, about which the whole system. oscillates within narrow limits, and which is determined by this property; that if every body in the system be projected on it, and if the mass of each be multiplied by the area described in a given time by its projection on this plane, the sum of all these products will be a maximum. This plane of greatest inertia, by no means peculiar to the solar system, but existing in every system of bodies submitted to their mutual attractions only, always remains parallel to itself, and maintains a fixed position, whence the oscillations of the system may be estimated through unlimited time. It is situate nearly half way between the orbits of Jupiter and Saturn, and is inclined to the ecliptic at an angle of about 1° 35′ 31′′.

All the periodic and secular inequalities deduced from the law of gravitation are so perfectly confirmed by observations, that analysis has become one of the most certain means of discovering the planetary irregularities, either when they are too small, or too long in their periods, to be detected by other methods. Jupiter and Saturn, however, exhibit inequalities which for a long time seemed discordant with that law. All observations, from those of the Chinese and Arabs down to the present day, prove that for ages the mean motions of Jupiter and Saturn have been affected by great inequalities of very long periods, forming what appeared an anomaly in the theory of the planets. It was long known by observation, that five times the mean motion of Saturn is nearly equal to twice that of Jupiter; a relation which the sagacity of La Place perceived to be the cause of a periodic inequality in the mean motion of each of these planets, which completes its period in nearly 929 Julian years, the one being retarded, while the other is accelerated. These inequalities are strictly periodical, since

they depend on the configuration of the two planets; and the theory is perfectly confirmed by observation, which shows that in the course of twenty centuries, Jupiter's mean motion has been accelerated by 3° 23', and Saturn's retarded by 5°.13'.

It might be imagined that the reciprocal action of such planets as have satellites would be different from the influence of those that have none; but the distances of the satellites from their primaries are incomparably less than the distances of the planets from the sun, and from one another, so that the system of a planet and its satellites moves nearly as if all those bodies were united in their common centre of gravity; the action of the sun however disturbs in some degree the motion of the satellites about their primary.

The changes that take place in the planetary system are exhibited on a small scale by Jupiter and his satellites; and as the period requisite for the development of the inequalities of these little moons only extends to a few centuries, it may be regarded as an epitome of that grand cycle which will not be accomplished by the planets in myriads of centuries. The revolutions of the satellites about Jupiter are precisely similar to those of the planets about the sun; it is true they are disturbed by the sun, but his distance is so great, that their motions are nearly the same as if they were not under his influence. The satellites like the planets, were probably projected in elliptical orbits, but the compression of Jupiter's spheroid is very great in consequence of his rapid rotation; and as the masses of the satellites are nearly 100000 times less than that of Jupiter, the immense quantity of prominent matter at his equator must soon have given the circular form observed in the orbits of the first and second satellites, which its superior attraction will always maintain. The third and fourth satellites being further removed from its influence, move in orbits with a very small eccentricity. The same cause occasions the orbits of the satellites to remain nearly in the plane of Jupiter's equator, on account of which they are always seen nearly in the same line; and the powerful action of that quantity of prominent matter is the reason why the motion of the nodes of these little bodies is so much more rapid than those of the planet. The nodes of the fourth satellite accomplish a revolution in 520 years, while those of Jupiter's

orbit require no less than 50673 years, a proof of the reciprocal attraction between each particle of Jupiter's equator and of the satellites. Although the two first satellites sensibly move in circles, they acquire a small ellipticity from the disturbances they experience.

The orbits of the satellites do not retain a permanent inclination, either to the plane of Jupiter's equator, or to that of his orbit, but to certain planes passing between the two, and through their intersection; these have a greater inclination to his equator the further the satellite is removed, a circumstance entirely owing to the influence of Jupiter's compression.

A singular law obtains among the mean motions and mean longitudes of the three first satellites. It appears from observation, that the mean motion of the first satellite, plus twice that of the third, is equal to three times that of the second, and that the mean longitude of the first satellite, minus three times that of the second, plus twice that of the third, is always equal to two right angles. It is proved by theory, that if these relations had only been approximate when the satellites were first launched into space, their mutual attractions would have established and maintained them. They extend to the synodic motions of the satellites, consequently they affect their eclipses, and have a very great influence on their whole theory. The satellites move so nearly in the plane of Jupiter's equator, which has a very small inclination to his orbit, that they are frequently eclipsed by the planet. The instant of the beginning or end of an eclipse of a satellite marks the same instant of absolute time to all the inhabitants of the earth; therefore the time of these eclipses observed by a traveller, when compared with the time of the eclipse computed for Greenwich or any other fixed meridian, gives the difference of the meridians in time, and consequently the longitude of the place of observation. It has required all the refinements of modern instruments to render the eclipses of these remote moons available to the mariner; now however, that system of bodies invisible to the naked eye, known to man by the aid of science alone, enables him to traverse the ocean, spreading the light of knowledge and the blessings of civilization over the most remote regions, and to return loaded with the productions of another hemisphere. Nor is this all: the eclipses of Jupiter's

satellites have been the means of a discovery, which, though not so immediately applicable to the wants of man, unfolds a property of light, that medium, without whose cheering influence all the beauties of the creation would have been to us a blank. It is observed, that those eclipses of the first satellite which happen when Jupiter is near conjunction, are later by 16' 26" than those which take place when the planet is in opposition. But as Jupiter is nearer to us when in opposition by the whole breadth of the earth's orbit than when in conjunction, this circumstance was attributed to the time employed by the rays of light in crossing the earth's orbit, a distance of 192 millions of miles; whence it is estimated, that light travels at the rate of 192000 miles in one second. Such is its velocity, that the earth, moving at the rate of nineteen miles in a second, would take two months to pass through a distance which a ray of light would dart over in eight minutes. The subsequent discovery of the aberration of light confirmed this astonishing result.

Objects appear to be situate in the direction of the rays that proceed from them. Were light propagated instantaneously, every object, whether at rest or in motion, would appear in the direction of these rays; but as light takes some time to travel, when Jupiter is in conjunction, we see him by means of rays that left him 16' 26" before; but during that time we have changed our position, in consequence of the motion of the earth in its orbit; we therefore refer Jupiter to a place in which he is not. His true position is in the diagonal of the parallelogram, whose sides are in the ratio of the velocity of light to the velocity of the earth in its orbit, which is as 192000 to 19. In consequence of aberration, none of the heavenly bodies are in the place in which they seem to be. In fact, if the earth were at rest, rays from a star would pass along the axis of a telescope directed to it; but if the earth were to begin to move in its orbit with its usual velocity, these rays would strike against the side of the tube; it would therefore be necessary to incline the telescope a little, in order to see the star. The angle contained between the axis of the telescope and a line drawn to the true place of the star, is its aberration, which varies in quantity and direction in different parts of the earth's

« PreviousContinue »