orbit; but as it never exceeds twenty seconds, it is insensible in ordinary cases. The velocity of light deduced from the observed aberration of the fixed stars, perfectly corresponds with that given by the eclipses of the first satellite. The same result obtained from sources so different, leaves not a doubt of its truth. Many such beautiful coincidences, derived from apparently the most unpromising and dissimilar circumstances, occur in physical astronomy, and prove dependences which we might otherwise be unable to trace. The identity of the velocity of light at the distance of Jupiter and on the earth's surface shows that its velocity is uniform; and if light consists in the vibrations of an elastic fluid or ether filling space, which hypothesis accords best with observed phenomena, the uniformity of its velocity shows that the density of the fluid throughout the whole extent of the solar system, must be proportional to its elasticity. Among the fortunate conjectures which have been confirmed by subsequent experience, that of Bacon is not the least remarkable. It produces in me,' says the restorer of true philosophy, a doubt, whether the face of the serene and starry heavens be seen at the instant it really exists, or not till some time later; and whether there be not, with respect to the heavenly bodies, a true time and an apparent time, no less than a true place and an apparent place, as astronomers say, ou account of parallax. For it seems incredible that the species or rays of the celestial bodies can pass through the immense interval between them and us in an instant; or that they do not even require some considerable portion of time.' As great discoveries generally lead to a variety of conclusions, the aberration of light affords a direct proof of the motion of the earth in its orbit; and its rotation is proved by the theory of falling bodies, since the centrifugal force it induces retards the oscillations of the pendulum in going from the pole to the equator. Thus a high degree of scientific knowledge has been requisite to dispel the errors of the senses. The little that is known of the theories of the satellites of Saturn and Uranus is in all respects similar to that of Jupiter. The great compression of Saturn occasions its satellites to move nearly in the plane of its equator. Of the situation of the equator of Uranus we know nothing, nor of its compression. The orbits of its satellites are nearly perpendicular to the plane of the ecliptic. Our constant companion the moon next claims attention. Several circumstances concur to render her motions the most interesting, and at the same time the most difficult to investigate of all the bodies of our system. In the solar system planet troubles planet, but in the lunar theory the sun is the great disturbing cause; his vast distance being compensated by his enormous magnitude, so that the motions of the moon are more irregular than those of the planets; and on account of the great ellipticity of her orbit and the size of the sun, the approximations to her motions are tedious and difficult, beyond what those unaccustomed to such investigations could imagine. Neither the eccentricity of the lunar orbit, nor its inclination to the plane of the ecliptic, have experienced any changes from secular inequalities; but the mean motion, the nodes, and the perigee, are subject to very remarkable variations. From an eclipse observed at Babylon by the Chaldeans, on the 19th of March, seven hundred and twenty-one years before the Christian era, the place of the moon is known from that of the sun at the instant of opposition; whence her mean longitude may be found; but the comparison of this mean longitude with another mean longitude, computed back for the instant of the eclipse from modern observations, shows that the moon performs her revolution round the earth more rapidly and in a shorter time now, than she did formerly; and that the acceleration in her mean motion has been increasing from age to age as the square of the time; all the ancient and intermediate eclipses confirm this result. As the mean motions of the planets have no secular inequalities, this seemed to be an unaccountable anomaly, and it was at one time attributed to the resistance of an ethereal medium pervading space; at another to the successive transmission of the gravitating force: but as La Place proved that neither of these causes, even if they exist, have any influence on the motions of the lunar perigee or nodes, they could not affect the mean motion, a variation in the latter from such a cause being inseparably connected with variations in the two former of these elements. That great ma thematician, however, in studying the theory of Jupiter's satel lites, perceived that the secular variations in the elements of Jupiter's orbit, from the action of the planets, occasion corresponding changes in the motions of the satellites: this led him to suspect that the acceleration in the mean motion of the moon might be connected with the secular variation in the eccentricity of the terrestrial orbit; and analysis has proved that he assigned the true cause. If the eccentricity of the earth's orbit were invariable, the moon would be exposed to a variable disturbance from the action of the sun, in consequence of the earth's annual revolution; but it would be periodic, since it would be the same as often as the sun, the earth, and the moon returned to the same relative positions: on account however of the slow and incessant diminution in the eccentricity of the terrestrial orbit, the revolution of our planet is performed at different distances from the sun every year. The position of the moon with regard to the sun, undergoes a corresponding change; so that the mean action of the sun on the moon varies from one century to another, and occasions the secular increase in the moon's velocity called the acceleration, a name which is very appropriate in the present age, and which will continue to be so for a vast number of ages to come; because, as long as the earth's eccentricity diminishes, the moon's mean motion will be accelerated; but when the eccentricity has passed its minimum and begins to increase, the mean motion will be retarded from age to age. At present the secular acceleration is about 10", but its effect on the moon's place increases as the square of the time. It is remarkable that the action of the planets thus reflected by the sun to the moon, is much more sensible than their direct action, either on the earth or moon. The secular diminution in the eccentricity, which has not altered the equation of the centre of the sun by eight minutes since the earliest recorded eclipses, has produced a variation of 1° 48′ in the moon's longitude, and of 7° 12′ in her mean anomaly. The action of the sun occasions a rapid but variable motion in the nodes and perigee of the lunar orbit; the former, though they recede during the greater part of the moon's revo lution, and advance during the smaller, perform their sidereal revolutions in 6793days 4212, and the latter, though its motion is sometimes retrograde and sometimes direct, in 3232.5807, or a little more than nine years: but such is the difference between the disturbing energy of the sun and that of all the planets put together, that it requires no less than 109770 years for the greater axis of the terrestrial orbit to do the same. It is evident that the same secular variation which changes the sun's distance from the earth, and occasions the acceleration in the moon's mean motion, must affect the motion of the nodes and perigee; and it consequently appears, from theory as well as observation, that both these elements are subject to a secular inequality, arising from the variation in the eccentricity of the earth's orbit, which connects them with the acceleration; so that both are retarded when the mean motion is anticipated. The secular variations in these three elements are in the ratio of the numbers 3, 0.735, and 1; whence the three motions of the moon, with regard to the sun, to her perigee, and to her nodes, are continually accelerated, and their secular equations are as the numbers 1, 4, and 0.265, or according to the most recent investigations as 1, 4, 6776 and 0.391. A comparison of ancient eclipses observed by the Arabs, Greeks, and Chaldeans, imperfect as they are, with modern observations, perfectly confirms these results of analysis. Future ages will develop these great inequalities, which at some most distant period will amount to many circumferences. They are indeed periodic; but who shall tell their period? Millions of years must elapse before that great cycle is accomplished; but such changes, though rare in time, are frequent in eternity.' The moon is so near, that the excess of matter at the earth's equator occasions periodic variations in her longitude and latitude; and, as the cause must be proportional to the effect, a comparison of these inequalities, computed from theory, with the same given by observation, shows that the compression of the terrestrial spheroid, or the ratio of the difference between the polar and equatorial diameter to the diameter of the equator is 1 305.05. It is proved analytically, that if a fluid mass of homogeneous matter, whose particles attract each other in versely as the square of the distance, were to revolve about an axis, as the earth, it would assume the form of a spheroid, whose compression is. Whence it appears, that the earth is not homogeneous, but decreases in density from its centre to its circumference. Thus the moon's eclipses show the earth to be round, and her inequalities not only determine the form, but the internal structure of our planet; results of analysis which could not have been anticipated. Similar inequalities in Jupiter's satellites prove that his mass is not homogeneous, and that his compression is 1 13.8 The motions of the moon have now become of more importance to the navigator and geographer than those of any other body, from the precision with which the longitude is determined by the occultations of stars and lunar distances. The lunar theory is brought to such perfection, that the times of these phenomena, observed under any meridian, when compared with that computed for Greenwich in the Nautical Almanack, gives the longitude of the observer within a few miles. The accuracy of that work is obviously of extreme importance to a maritime nation; we have reason to hope that the new Ephemeris, now in preparation, will be by far the most perfect work of the kind that ever has been published. From the lunar theory, the mean distance of the sun from the earth, and thence the whole dimensions of the solar system are known; for the forces which retain the earth and moon in their orbits, are respectively proportional to the radii vectores of the earth and moon, each being divided by the square of its periodic time; and as the lunar theory gives the ratio of the forces, the ratio of the distance of the sun and moon from the earth is obtained: whence it appears that the sun's distance from the earth is nearly 396 times greater than that of the moon. The method however of finding the absolute distances of the celestial bodies in miles, is in fact the same with that employed in measuring distances of terrestrial objects. From the extremities of a known base the angles which the visual rays from the object form with it, are measured; their sum subtracted from two right-angles gives the angle opposite the base; therefore by trigonometry, all the angles and sides of |