Page images

minutes. The apparent and mean time coincide four times in

the year.

Astronomers begin the day at noon, but in common reckoning the day begins at midnight. In England it is divided into twenty-four hours, which are counted by twelve and twelve ; but in France, astronomers adopting decimal division, divide the day into ten hours, the hour into one hundred minutes, and the minute into a hundred seconds, because of the facility in computation, and in conformity with their system of weights and measures. This subdivision is not used in common life, nor has it been adopted in any other country, though their scientific writers still employ that division of time. The mean length of the day, though accurately determined, is not sufficient for the purposes either of astronomy or civil life. The length of the year is pointed out by nature as a measure of long periods; but the incommensurability that exists between the lengths of the day, and the revolutions of the sun, renders it difficult to adjust the estimation of both in whole numbers. If the revolution of the sun were accomplished in 365 days, all the years would be of precisely the same number of days, and would begin and end with the sun at the same point of the ecliptic; but as the sun's revolution includes the fraction of a day, a civil year and a revolution of the sun have not the same duration. Since the - fraction is nearly the fourth of a day, four years are nearly equal to four revolutions of the sun, so that the addition of a supernumerary day every fourth year nearly compensates the difference; but in process of time further correction will be necessary, because the fraction is less than the fourth of a day. The period of seven days, by far the most permanent division of time, and the most ancient monument of astronomical knowledge, was used by the Brahmins in India with the same denominations employed by us, and was alike found in the Calendars of the Jews, Egyptians, Arabs, and Assyrians; it has survived the fall of empires, and has existed among all successive generations, a proof of their common origin.

The new moon immediately following the winter solstice in the 707th year of Rome was made the 1st of January of the first year of Cæsar; the 25th of December in his 45th year, is considered as the date of Christ's nativity; and Cæsar's 46th year is

assumed to be the first of our era. The preceding year is called the first year before Christ by chronologists, but by astronomers it is called the year (). The astronomical year begins on the 31st of December at noon; and the date of an observation expresses the days and hours which actually elapsed since that time.

Some remarkable astronomical eras are determined by the position of the major axis of the solar ellipse. Moving at the rate of 61".906 annually, it accomplishes a tropical revolution in 20935 years. It coincided with the line of the equinoxes 4000 or 4089 years before the Christian era, much about the time chronologists assign for the creation of man. In 6485 the major axis will again coincide with the line of the equinoxes, but then the solar perigee will coincide with the equinox of spring; whereas at the creation of man it coincided with the autumnal equinox. In the year 1250 the major axis was perpendicular to the line of the equinoxes, and then the solar perigee coincided with the solstice of winter, and the apogee with the solstice of summer. On that account La Place proposed the year 1250 as a universal epoch, and that the vernal equinox of that year should be the first day of the first year.

The variations in the positions of the solar ellipse occasion corresponding changes in the length of the seasons. In its present position spring is shorter than summer, and autumn longer than winter; and while the solar perigee continues as it now is, between the solstice of winter and the equinox of spring, the period including spring and summer will be longer than that including autumn and winter: in this century the difference is about seven days. These intervals will be equal towards the year 6485, when the perigee comes to the equinox of spring. Were the earth's orbit circular, the seasons would be equal; their differences arise from the eccentricity of the earth's orbit, small as it is; but the changes are so gradual as to be imperceptible in the short space of human life.

No circumstance in the whole science of astronomy excites a deeper interest than its application to chronology. 'Whole nations,' says La Place, have been swept from the earth, with their language, arts and sciences, leaving but confused masses of ruin to mark the place where mighty cities stood; their


history, with the exception of a few doubtful traditions, has perished; but the perfection of their astronomical observations marks their high antiquity, fixes the periods of their existence, and proves that even at that early period they must have made considerable progress in science.'

The ancient state of the heavens may now be computed with great accuracy; and by comparing the results of computation with ancient observations, the exact period at which they were made may be verified if true, or if false, their error may be detected. If the date be accurate, and the observation good, it will verify the accuracy of modern tables, and show to how many centuries they may be extended, without the fear of error. A few examples will show the importance of this subject.

At the solstices the sun is at his greatest distance from the equator, consequently his declination at these times is equal to the obliquity of the ecliptic, which in former times was determined from the meridian length of the shadow of the style of a dial on the day of the solstice. The lengths of the meridian shadow at the summer and winter solstice are recorded to have been observed at the city of Layang, in China, 1100 years before the Christian era. From these, the distances of the sun from the zenith of the city of Layang are known. Half the sum of these zenith distances determines the latitude, and half their difference gives the obliquity of the ecliptic at the period of the observation; and as the law of the variation in the obliquity is known, both the time and place of the observations have been verified by computation from modern tables. Thus the Chinese had made some advances in the science of astronomy at that early period; the whole chronology of the Chinese is founded on the observations of eclipses, which prove the existence of that empire for more than 4700 years. The epoch of the lunar tables of the Indians, supposed by Bailly to be 3000 before the Christian era, was proved by La Place from the acceleration of the moon, not to be more ancient than the time of Ptolemy. The great inequality of Jupiter and Saturn whose cycle embraces 929 years, is peculiarly fitted for marking the civilization of a people. The Indians had determined the mean motions of these two planets in that part of

their periods when the apparent mean motion of Saturn was at the slowest, and that of Jupiter the most rapid. The periods in which that happened were 3102 years before the Christian era, and the year 1491 after it.

The returns of comets to their perihelia may possibly mark the present state of astronomy to future ages.

The places of the fixed stars are affected by the precession of the equinoxes; and as the law of that variation is known, their positions at any time may be computed. Now Eudoxus, a contemporary of Plato, mentions a star situate in the pole of the equator, and from computation it appears that x Draconis was not very far from that place about 3000 years ago; but as Eudoxus lived only about 2150 years ago, he must have described an anterior state of the heavens, supposed to be the same that was determined by Chiron, about the time of the siege of Troy. Every circumstance concurs in showing that astronomy was cultivated in the highest ages of antiquity.

A knowledge of astronomy leads to the interpretation of hieroglyphical characters, since astronomical signs are often found on the ancient Egyptian monuments, which were probably employed by the priests to record dates. On the ceiling of the portico of a temple among the ruins of Tentyris, there is a long row of figures of men and animals, following each other in the same direction; among these are the twelve signs of the zodiac, placed according to the motion of the sun: it is probable that the first figure in the procession represents the beginning of the year. Now the first is the Lion as if coming out of the temple; and as it is well known that the agricultural year of the Egyptians commenced at the solstice of summer, the epoch of the inundations of the Nile, if the preceding hypothesis be true, the solstice at the time the temple was built must have happened in the constellation of the lion; but as the solstice now happens 21°.6 north of the constellation of the Twins, it is easy to compute that the zodiac of Tentyris must have been made 4000 years ago.

The author had occasion to witness an instance of this most interesting application of astronomy, in ascertaining the date of a papyrus sent from Egypt by Mr. Salt, in the hieroglyphical researches of the late Dr. Thomas Young, whose profound and

varied acquirements do honour not only to his country, but to the age in which he lived. The manuscript was found in a mummy case; it proved to be a horoscope of the age of Ptolemy, and its antiquity was determined from the configuration of the heavens at the time of its construction.

The form of the earth furnishes a standard of weights and measures for the ordinary purposes of life, as well as for the determination of the masses and distances of the heavenly bodies. The length of the pendulum vibrating seconds in the latitude of London forms the standard of the British measure of extension. Its length oscillating in vacuo at the temperature of 62° of Fahrenheit, and reduced to the level of the sea, was determined by Captain Kater, in parts of the imperial standard yard, to be 39.1387 inches. The weight of a cubic inch of water at the temperature of 62° Fahrenheit, barometer 30, was also determined in parts of the imperial troy pound, whence a standard both of weight and capacity is deduced. The French have adopted the metre for their unit of linear measure, which is the ten millionth part of that quadrant of the meridian passing through Formentera and Greenwich, the middle of which is nearly in the forty-fifth degree of latitude. Should the national standards of the two countries be lost in the vicissitudes of human affairs, both may be recovered, since they are derived from natural standards presumed to be invariable. The length of the pendulum would be found again with more facility than the metre ; but as no measure is mathematically exact, an error in the original standard may at length become sensible in measuring a great extent, whereas the error that must necessarily arise in measuring the quadrant of the meridian is rendered totally insensible by subdivision in taking its ten millionth part. The French have adopted the decimal division not only in time, but in their degrees, weights, and measures, which affords very great facility in computation. It has not been adopted by any other people; though nothing is more desirable than that all nations should concur in using the same division and standards, not only on account of the convenience, but as affording a more definite idea of quantity. is singular that the decimal division of the day, of degrees, weights and measures, was employed in China 4000 years ago;


« PreviousContinue »