Page images
PDF
EPUB

up; so that every possible variety occurs in some part or other of its shores, both as to magnitude and time. It requires a very wide expanse of water to accumulate the impulse of the sun and moon, so as to render their influence sensible; on that account the tides in the Mediterranean and Black Sea are scarcely perceptible.

These perpetual commotions in the waters of the ocean are occasioned by forces that bear a very small proportion to terrestrial gravitation: the sun's action in raising the ocean is only the 38448000 of gravitation at the earth's surface, and the action of the moon is little more than twice as much, these forces being in the ratio of 1 to 2.35333. From this ratio the mass of the moon is found to be only 5th part of that of the earth. The initial state of the ocean has no influence on the tides; for whatever its primitive conditions may have been, they must soon have vanished by the friction and mobility of the fluid. One of the most remarkable circumstances in the theory of the tides is the assurance that in consequence of the density of the sea being only one-fifth of the mean density of the earth, the stability of the equilibrium of the ocean never can be subverted by any physical cause whatever. A general inundation arising from the mere instability of the ocean is therefore impossible.

The atmosphere when in equilibrio is an ellipsoid flattened at the poles from its rotation with the earth: in that state its strata are of uniform density at equal heights above the level of the sea, and it is sensibly of finite extent, whether it consists of particles infinitely divisible or not. On the latter hypothesis it must really be finite; and even if the particles of matter be infinitely divisible, it is known by experience to be of extreme tenuity at very small heights. The barometer rises in proportion to the superincumbent pressure. Now at the temperature of melting ice, the density of mercury is to that of air as 10320 to 1; and as the mean height of the barometer is 29.528 inches, the height of the atmosphere by simple proportion is 30407 feet, at the mean temperature of 62°, or 34153 feet, which is extremely small, when compared with the radius of the earth. The action of the sun and moon disturbs the equilibrium of the atmosphere, producing oscillations similar to those in the ocean, which occasion periodic variations in the heights of the

barometer. These, however, are so extremely small, that their existence in latitudes so far removed from the equator is doubtful; a series of observations within the tropics can alone decide this delicate point. La Place seems to think that the flux and reflux distinguishable at Paris may be occasioned by the rise and fall of the ocean, which forms a variable base to so great a portion of the atmosphere.

The attraction of the sun and moon has no sensible effect on the trade winds; the heat of the sun occasions these aërial currents, by rarefying the air at the equator, which causes the cooler and more dense part of the atmosphere to rush along the surface of the earth to the equator, while that which is heated is carried along the higher strata to the poles, forming two currents in the direction of the meridian. But the rotatory velocity of the air corresponding to its geographical situation decreases towards the poles; in approaching the equator it must therefore revolve more slowly than the corresponding parts of the earth, and the bodies on the surface of the earth must strike against it with the excess of their velocity, and by its reaction they will meet with a resistance contrary to their motion of rotation; so that the wind will appear, to a person supposing himself to be at rest, to blow in a contrary direction to the earth's rotation, or from east to west, which is the direction of the trade winds. The atmosphere scatters the sun's rays, and gives all the beautiful tints and cheerfulness of day. It transmits the blue light in greatest abundance; the higher we ascend, the sky assumes a deeper hue, but in the expanse of space the sun and stars must appear like brilliant specks in profound blackness.

The sun and most of the planets appear to be surrounded with atmospheres of considerable density. The attraction of the earth has probably deprived the moon of hers, for the refraction of the air at the surface of the earth is at least a thousand times as great as at the moon. The lunar atmosphere, therefore, must be of a greater degree of rarity than can be produced by our best air-pumps; consequently no terrestrial animal could exist in it.

Many philosophers of the highest authority concur in the belief that light consists in the undulations of a highly elastic

ethereal medium pervading space, which, communicated to the optic nerves, produce the phenomena of vision. The experiments of our illustrious countryman, Dr. Thomas Young, and those of the celebrated Fresnel, show that this theory accords better with all the observed phenomena than that of the emission of particles from the luminous body. As sound is propagated by the undulations of the air, its theory is in a great many respects similar to that of light. The grave or low tones are produced by very slow vibrations, which increase in frequency progressively as the note becomes more acute. When the vibrations of a musical chord, for example, are less than sixteen in a second, it will not communicate a continued sound to the ear; the vibrations or pulses increase in number with the acuteness of the note, till at last all sense of pitch is lost. The whole extent of human hearing, from the lowest notes of the organ to the highest known cry of insects, as of the cricket, includes about nine octaves.

The undulations of light are much more rapid than those of sound, but they are analogous in this respect, that as the frequency of the pulsations in sound increases from the low tones to the higher, so those of light augment in frequency, from the red rays of the solar spectrum to the extreme violet. By the experiments of Sir William Herschel, it appears that the heat communicated by the spectrum increases from the violet to the red rays; but that the maximum of the hot invisible rays is beyond the extreme red. Heat in all probability consists, like light and sound, in the undulations of an elastic medium. All the principal phenomena of heat may actually be illustrated by a comparison with those of sound. The excitation of heat and sound are not only similar, but often identical, as in friction and percussion; they are both communicated by contact and by radiation; and Dr. Young observes, that the effect of radiant heat in raising the temperature of a body upon which it falls, resembles the sympathetic agitation of a string, when the sound of another string, which is in unison with it, is transmitted to it through the air. Light, heat, sound, and the waves of fluids are all subject to the same laws of reflection, and, indeed, their undulating theories are perfectly similar. If, therefore, we may judge from analogy, the undu

lations of the heat producing rays must be less frequent tnan those of the extreme red of the solar spectrum; but if the analogy were perfect, the interference of two hot rays ought to produce cold, since darkness results from the interference of two undulations of light, silence ensues from the interference of two undulations of sound; and still water, or no tide, is the consequence of the interference of two tides.

The propagation of sound requires a much denser medium than that of either light or heat; its intensity diminishes as the rarity of the air increases; so that, at a very small height above the surface of the earth, the noise of the tempest ceases, and the thunder is heard no more in those boundless regions where the heavenly bodies accomplish their periods in eternal and sublime silence.

What the body of the sun may be, it is impossible to conjecture; but he seems to be surrounded by an ocean of flame, through which his dark nucleus appears like black spots, often of enormous size. The solar rays, which probably arise from the chemical processes that continually take place at his surface, are transmitted through space in all directions; but, notwithstanding the sun's magnitude, and the inconceivable heat that must exist where such combustion is going on, as the intensity both of his light and heat diminishes with the square of the distance, his kindly influence can hardly be felt at the boundaries of our system. Much depends on the manner in which the rays fall, as we readily perceive from the different climates on our globe. In winter the earth is nearer the sun byth than in summer, but the rays strike the northern hemisphere more obliquely in winter than in the other half of the year. In Uranus the sun must be seen like a small but brilliant star, not above the hundred and fiftieth part so bright as he appears to us; that is however 2000 times brighter than our moon to us, so that he really is a sun to Uranus, and probably imparts some degree of warmth. But if we consider that water would not remain fluid in any part of Mars, even at his equator, and that in the temperate zones of the same planet even alcohol and quicksilver would freeze, we may form some idea of the cold that must reign in Uranus, unless indeed the ether has a temperature. The climate of Venus more nearly

resembles that of the earth, though, excepting perhaps at her poles, much too hot for animal and vegetable life as they exist here; but in Mercury the mean heat, arising only from the intensity of the sun's rays, must be above that of boiling quicksilver, and water would boil even at his poles. Thus the planets, though kindred with the earth in motion and structure, are totally unfit for the habitation of such a being as man.

The direct light of the sun has been estimated to be equal to that of 5563 wax candles of a moderate size, supposed to be placed at the distance of one foot from the object: that of the moon is probably only equal to the light of one candle at the distance of twelve feet; consequently the light of the sun is more than three hundred thousand times greater than that of the moon; for which reason the light of the moon imparts no heat, even when brought to a focus by a mirror.

In adverting to the peculiarities in the form and nature of the earth and planets, it is impossible to pass in silence the magnetism of the earth, the director of the mariner's compass, and his guide through the ocean. This property probably arises from metallic iron in the interior of the earth, or from the circulation of currents of electricity round it: its influence extends over every part of its surface, but its accumulation and deficiency determine the two poles of this great magnet, which are by no means the same as the poles of the earth's rotation. In consequence of their attraction and repulsion, a needle freely suspended, whether it be magnetic or not, only remains in equilibrio when in the magnetic meridian, that is, in the plane which passes through the north and south magnetic poles. There are places where the magnetic meridian coincides with the terrestrial meridian; in these a magnetic needle freely suspended, points to the true north, but if it be carried successively to different places on the earth's sur face, its direction will deviate sometimes to the east and sometimes to the west of north. Lines drawn on the globe through all the places where the needle points due north and south, are called lines of no variation, and are extremely complicated. The direction of the needle is not even constant in the same place, but changes in a few years, according to a law not yet determined. In 1657, the line of no variation passed through

« PreviousContinue »