Page images
PDF
EPUB

to velocity (N. 37), the reciprocal attractions of a system remain the same, whether its center of gravity be at rest, or moving uniformly in space. It is computed that, had the earth received its motion from a single impulse, that impulse must have passed through a point about twenty-five miles from its center.

Since the motions of rotation and translation of the planets are independent of each other, though probably communicated by the same impulse, they form separate subjects of investigation.

SECTION II.

Elliptical Motion-Mean and True Motion-Equinoctial-Ecliptic-Equinoxes-Mean and True Longitude-Equation of Center-Inclination of the Orbits of Planets-Celestial Latitude-Nodes-Elements of an Orbit -Undisturbed or Elliptical Orbits-Great Inclination of the Orbits of the new Planets-Universal Gravitation the Cause of Perturbations in the Motions of the Heavenly Bodies-Problem of the Three BodiesStability of Solar System depends upon the Primitive Momentum of the Bodies.

A PLANET moves in its elliptical orbit with a velocity varying every instant, in consequence of two forces, one tending to the center of the sun, and the other in the direction of a tangent (N. 38) to its orbit, arising from the primitive impulse, given at the time when it was launched into space. Should the force in the tangent cease, the planet would fall to the sun by its gravity. Were the sun not to attract it, the planet would fly off in the tangent. Thus, when the planet is at the point of its orbit farthest from the sun, his action overcomes the planet's velocity, and brings it toward him with such an accelerated motion, that at last it overcomes the sun's attraction; and shooting past him, gradually decreases in velocity, until it arrives at the most distant point, where the sun's attraction again prevails (N. 39). In this motion the radii vectores (N. 40), or imaginary lines joining the centers of the sun and the planets, pass over equal areas or spaces in equal times (N. 41).

The mean distance of a planet from the sun is equal to half the major axis (N. 42) of its orbit: if, therefore, the planet described a circle (N. 43) round the sun at

its mean distance, the motion would be uniform, and the periodic time unaltered, because the planet would arrive at the extremities of the major axis at the same instant, and would have the same velocity, whether it moved in the circular or elliptical orbit, since the curves coincide in these points. But, in every other part, the elliptical or true motion (N. 44) would either be faster or slower than the circular or mean motion (N. 45). As it is necessary to have some fixed point in the heavens from whence to estimate these motions, the vernal equinox (N. 46) at a given epoch has been chosen. The equinoctial, which is a great circle traced in the starry heavens by the imaginary extension of the plane of the terrestrial equator, is intersected by the ecliptic, or apparent path of the sun, in two points diametrically opposite to one another, called the vernal and autumnal equinoxes. The vernal equinox is the point through which the sun passes, in going from the southern to the northern hemisphere; and the autumnal, that in which he crosses from the northern to the southern. mean or circular motion of a body, estimated from the vernal equinox, is its mean longitude; and its elliptical, or true motion, reckoned from that point, is its true longitude (N. 47): both being estimated from west to east, the direction in which the bodies move. The difference between the two is called the equation of the center (N. 48); which consequently vanishes at the apsides (N. 49), or extremities of the major axis, and is at its maximum ninety degrees (N. 50) distant from these points, or in quadratures (N. 51), where it measures the eccentricity (N. 52) of the orbit; so that the place of a planet in its elliptical orbit is obtained, by adding or subtracting the equation of the center to or from its mean longitude.

The

The orbits of the planets have a very small obliquity or inclination (N. 53) to the plane of the ecliptic in which the earth moves; and on that account, astronomers refer their motions to this plane at a given epoch as a known and fixed position. The angular distance of a planet from the plane of the ecliptic is its latitude (N. 54); which is south or north, according as the planet is south ur north of that plane. When the planet is in the plane

of the ecliptic, its latitude is zero: it is then said to be in its nodes (N. 55). The ascending node is that point in the ecliptic, through which the planet passes, in going from the southern to the northern hemisphere. The descending node is a corresponding point in the plane of the ecliptic diametrically opposite to the other, through which the planet descends in going from the northern to the southern hemisphere. The longitude and latitude of a planet cannot be obtained by direct observation, but are deduced from observations made at the surface of the earth, by a very simple computation. These two quantities, however, will not give the place of a planet in space. Its distance from the sun (N. 56) must also be known; and, for the complete determination of its elliptical motion, the nature and position of its orbit must be ascertained by observation. This depends upon seven quantities, called the elements of the orbit (N. 57). These are, the length of the major axis, and the eccentricity, which determine the form of the orbit: the longitude of the planet when at its least distance from the sun, called the longitude of the perihelion; the inclination of the orbit to the plane of the ecliptic, and the longitude of its ascending node; these give the position of the orbit in space; but the periodic time, and the longitude of the planet at a given instant, called the longitude of the epoch, are necessary for finding the place of the body in its orbit at all times. A perfect

knowledge of these seven elements is requisite, for ascertaining all the circumstances of undisturbed elliptical motion. By such means it is found, that the paths of the planets, when their mutual disturbances are omitted, are ellipses nearly approaching to circles, whose planes, slightly inclined to the ecliptic, cut it in straight lines, passing through the center of the sun (N. 58). The orbits of the recently discovered planets deviate more from the ecliptic than those of the ancient planets; that of Pallas, for instance, has an inclination of 34° 37' 50.2" to it; on which account it is more difficult to determine their motions.

Were the planets attracted by the sun only, they would always move in ellipses, invariable in form and position; and because his action is proportional to his

>ns with regard to each other, begins from zero, ineases to a maximum, decreases, and becomes zero ain, when the planets return to the same relative >sitions. In consequence of these, the disturbed planet sometimes drawn away from the sun. sometimes rought nearer to him: sometimes it is accelerated in s motion, and sometimes retarded. At one time it is rawn above the plane of its orbit, at another time below *, according to the position of the disturbing body. All uch changes, being accomplished in short periods, some ʼn a few months, others in years, or in hundreds of years, are denominated periodic inequalities. The inequalities of the other kind, though occasioned likewise by the disturbing energy of the planets, are entirely independent of their relative positions. They depend upon the relative positions of the orbits alone, whose forms and places in space are altered by very minute quantities, in immense periods of time, and are, therefore, called secular inequalities.

The periodical perturbations are compensated, when the bodies return to the same relative positions with regard to one another and to the sun: the secular inequalities are compensated, when the orbits return to the same positions relatively to one another, and to the plane of the ecliptic.

Planetary motion, including both these kinds of disturbance, may be represented by a body revolving in an ellipse, and making small and transient deviations, now on one side of its path, and now on the other, while the ellipse itself is slowly, but perpetually, changing both in form and position.

The periodic inequalities are merely transient deviations of a planet from its path, the most remarkable of which only lasts about 918 years; but, in consequence of the secular disturbances, the apsides, or extremities of the major axes of all the orbits. have a direct but variable motion in space, excepting those of the orbit of Venus, which are retrograde (N. 61), and the lines of the nodes move with a variable velocity in a contrary direction. Besides these, the inclination and eccentricity of every orbit are in a state of perpetual but slow change. These effects result from the disturbing action B

primitive momentum (N. 59) of the planets, and the ratio of their masses to that of the sun; for the nature of the conic sections in which the celestial bodies move, depends upon the velocity with which they were first propelled in space. Had that velocity been such as to make the planets move in orbits of unstable equilibrium (N. 60), their mutual attractions might have changed them into parabolas, or even hyperbolas (N. 22); so that the earth and planets might, ages ago, have been sweeping far from our sun through the abyss of space. But as the orbits differ very little from circles, the momentum of the planet, when projected, must have been exactly sufficient to insure the permanency and stability of the system. Besides, the mass of the sun is vastly. greater than that of any planet; and as their inequali-. ties bear the same ratio to their elliptical motions, that their masses do to that of the sun, their mutual disturbances only increase or diminish the eccentricities of their orbits, by very minute quantities; consequently the magnitude of the sun's mass is the principal cause of the stability of the system. There is not in the physical world a more splendid example of the adaptation of means to the accomplishment of an end, than is exhibited in the nice adjustment of these forces, at once the cause of the variety and of the order of Nature.

SECTION III.

Perturbations, Periodic and Circular-Disturbing Action equivalent to three Partial Forces-Tangential Force the Cause of the Periodic Ine qualities in Longitude, and Secular Inequalities in the Form and Position of the Orbit in its own Plane-Radial Force the Cause of Variations in the Planet's Distance from the Sun-It combines with the Tangential Force to produce the Secular Variations in the Form and Position of the Orbit in its own Plane-Perpendicular Force the Cause of Periodic Perturbations in Latitude, and Secular Variations in the Position of the Orbit with regard to the Plane of the Ecliptic-Mean Motion and Major Axis Invariable-Stability of System-Effects of a Resisting MediumInvariable Plane of the Solar System and of the Universe-Great Inequality of Jupiter and Saturn.

THE planets are subject to disturbances of two kinds, both resulting from the constant operation of their reciprocal attraction: one kind, depending upon their posi

« PreviousContinue »