Page images
PDF
EPUB

in the rest of physical astronomy, and prove dependences which we might otherwise be unable to trace. The identity of the velocity of light, at the distance of Jupiter, and on the earth's surface, shows that its velocity is uniform; and if light consists in the vibrations of an elastic fluid or ether filling space, an hypothesis which accords best with observed phenomena, the uniformity of its velocity shows that the density of the fluid throughout the whole extent of the solar system must be proportional to its elasticity. Among the fortunate conjectures which have been confirmed by subsequent experience, that of Bacon is not the least remarkable. It produces in me,' says the restorer of true philosophy, a doubt whether the face of the serene and starry heavens be seen at the instant it really exists, or not till some time later; and whether there be not, with respect to the heavenly bodies, a true time and an apparent time, no less than a true place and an apparent place, as astronomers say, on account of parallax. For it seems incredible that the species or rays of the celestial bodies can pass through the immense interval between them and us in an instant, or that they do not even require some considerable portion of time.'

As great discoveries generally lead to a variety of conclusions, the aberration of light affords a direct proof of the motion of the earth in its orbit;

D

and its rotation is proved by the theory of falling bodies, since the centrifugal force it induces retards the oscillations of the pendulum in going from the pole to the equator. Thus a high degree of scientific knowledge has been requisite to dispel the errors of the senses.

The little that is known of the theories of the satellites of Saturn and Uranus is, in all respects, similar to that of Jupiter. The great compression of Saturn occasions its satellites to move nearly in the plane of its equator. Of the situation of the equator of Uranus we know nothing, nor of his compression; but the orbits of his satellites are nearly perpendicular to the plane of the ecliptic, and by analogy they ought to be in the plane of his equator.

SECTION VI.

Our constant companion, the moon, next claims our attention. Several circumstances concur to render her motions the most interesting, and at the same time the most difficult to investigate of all the bodies of our system. In the solar system planet troubles planet, but in the lunar theory the sun is the great disturbing cause; his vast distance being compensated by his enormous magnitude, so that the motions of the moon are more irregular than

those of the planets; and, on account of the great ellipticity of her orbit, and the size of the sun, the approximations to her motions are tedious and difficult beyond what those unaccustomed to such investigations could imagine. Among the innumerable periodic inequalities to which the moon's motion in longitude is liable, the most remarkable are the Evection, the Variation, and the Annual Equation. The forces producing the evection diminish the excentricity of the lunar orbit in conjunction and opposition, and augment it in quadrature. The period of this inequality is less than thirty-two days. Were the increase and diminution always the same, the evection would only depend upon the distance of the moon from the sun; but its absolute value also varies with her distance from the perigee of her orbit. Ancient astronomers, who observed the moon solely with a view to the prediction of eclipses, which can only happen in conjunction and opposition, where the excentricity is diminished by the evection, assigned too small a value to the ellipticity of her orbit. The variation, which is at its maximum when the moon is 45° distant from the sun, vanishes when that distance amounts to a quadrant, and also when the moon is in conjunction and opposition; consequently, that inequality never could have been discovered from the eclipses: its period is half a lunar month. The annual equation arises from

the moon's motion being accelerated when that of the earth is retarded, and vice versa-for, when the earth is in its perihelion, the lunar orbit is enlarged by the action of the sun; therefore, the moon requires more time to perform her revolution. But, as the earth approaches its aphelion, the moon's orbit contracts, and less time is necessary to accomplish her motion,-its period, consequently, depends upon the time of the year. In the eclipses the annual equation combines with the equation of the centre of the terrestrial orbit, so that ancient astronomers imagined the earth's orbit to have a greater excentricity than modern astronomers assign to it.

The planets disturb the motion of the moon both directly and indirectly; because their action on the earth alters its relative position with regard to the sun and moon, and occasions inequalities in the moon's motion, which are more considerable than those arising from their direct action for the same reason the moon, by disturbing the earth, indirectly disturbs her own motion. Neither the excentricity of the lunar orbit, nor its mean inclination to the plane of the ecliptic, have experienced any changes from secular inequalities; for, although the mean action of the sun on the moon depends upon the inclination of the lunar orbit to the ecliptic, and that the position of the ecliptic is sub

ject to a secular inequality, yet analysis shows that it does not occasion a secular variation in the inclination of the lunar orbit, because the action of the sun constantly brings the moon's orbit to the same inclination on the ecliptic. The mean motion, the nodes, and the perigee, however, are subject to very remarkable variations.

From an eclipse observed by the Chaldeans at Babylon, on the 19th of March, seven hundred and twenty-one years before the Christian era, the place of the moon is known from that of the sun at the instant of opposition, whence her mean longitude may be found; but the comparison of this mean longitude with another mean longitude, computed back for the instant of the eclipse from modern observations, shows that the moon performs her revolution round the earth more rapidly and in a shorter time now, than she did formerly; and that the acceleration in her mean motion has been increasing from age to age as the square of the time all ancient and intermediate eclipses confirm this result. As the mean motions of the planets have no secular inequalities, this seemed to be an unaccountable anomaly. It was at one time attributed to the resistance of an etherial medium pervading space, and at another to the successive transmission of the gravitating force; but as La Place proved that neither of these causes,

« PreviousContinue »