Page images

indeed such plants could flourish without the intense light of a tropical sun. But, even if the decreasing temperature of the earth be sufficient to produce the observed effects, it must be extremely slow in its operation; for, in consequence of the rotation of the earth being a measure of the periods of the celestial motions, it has been proved that, if the length of the day had decreased by the three-thousandth part of a second since the observations of Hipparchus two thousand years ago, it would have diminished the secular equation of the moon by 44"-4. It is, therefore, beyond a doubt that the mean temperature of the earth cannot have sensibly varied during that time. If, then, the appearances exhibited by the strata are really owing to a decrease of internal temperature, it either shows the immense periods requisite to produce geological changes, to which two thousand years are as nothing, or that the mean temperature of the earth had arrived at a state of equilibrium before these observations.

However strong the indications of the primitive fluidity of the earth, as there is no direct proof of it, the hypothesis can only be regarded as very probable. But one of the most profound philosophers and elegant writers of modern times has found in the secular variation of the excentricity of the terrestrial orbit an evident cause of decreasing temperature. That accomplished author, in pointing out the mutual dependencies of phenomena, says, "It is evident that the mean temperature of the whole surface of the globe, in so far as it is maintained by the action of the sun at a higher degree than it would have were the sun extinguished, must depend on the mean quantity of the sun's rays which it receives, or—which comes to the same thing-on the total quantity received in a given invariable time; and, the length of the year being unchangeable in all the fluctuations of the planetary system, it follows that the total amount of solar radiation will determine, cateris paribus, the general climate of the earth. Now, it is not difficult to show that this amount is inversely proportional to the minor axis of the ellipse described by the earth about the sun (N. 143), regarded as slowly variable; and that, therefore, the major axis remaining, as we know it to be, constant, and the orbit being actually in a state of approach to a circle, and consequently the minor axis being on the increase, the mean annual amount of solar radiation received


by the whole earth must be actually on the decrease. We have, therefore, an evident real cause to account for the phenomenon." The limits of the variation in the excentricity of the earth's orbit are unknown. But, if its ellipticity has ever been as great as that of the orbit of Mercury or Pallas, the mean temperature of the earth must have been sensibly higher than it is at present. Whether it was great enough to render our northern climates fit for the production of tropical plants, and for the residence of the elephant and other animals now inhabitants of the torrid zone, it is impossible to say.

Of the decrease in temperature of the northern hemisphere there is abundant evidence in the fossil plants discovered in very high latitudes, which could only have existed in a tropical climate, and which must have grown near the spot where they are found, from the delicacy of their structure and the perfect state of their preservation. This change of temperature has been erroneously ascribed to an excess in the duration of spring and summer in the northern hemisphere, in consequence of the excentricity of the solar ellipse. The length of the seasons varies with the position of the perihelion (N. 64) of the earth's orbit for two reasons. On account of the excentricity, small as it is, any line passing through the centre of the sun divides the terrestrial ellipse into two unequal parts, and by the laws of elliptical motion the earth moves through these two portions with unequal velocities. The perihelion always lies in the smaller portion, and there the earth's motion is the most rapid. In the present position of the perihelion, spring and summer north of the equator exceed by about eight days the duration of the same seasons south of it. And 10,492 years ago the southern hemisphere enjoyed the advantage we now possess from the secular variation of the perihelion. Yet Sir John Herschel has shown that by this alternation neither hemisphere acquires any excess of light or heat above the other; for, although the earth is nearer to the sun while moving through that part of its orbit in which the perihelion lies than in the other part, and consequently receives a greater quantity of light and heat, yet as it moves faster it is exposed to the heat for a shorter time. In the other part of the orbit, on the contrary, the earth, being farther from the sun, receives fewer of his rays; but because its motion is slower, it is exposed to them for a longer time; and, as in both

cases the quantity of heat and the angular velocity vary exactly in the same proportion, a perfect compensation takes place (N. 144). So that the excentricity of the earth's orbit has little or no effect on the temperature corresponding to the difference of the seasons.

Sir Charles Lyell, in his excellent works on Geology, refers the increased cold of the northern hemisphere to the operation of existing causes with more probability than most theories that have been advanced in solution of this difficult subject. The loftiest mountains would be represented by a grain of sand on a globe six feet in diameter, and the depth of the ocean by a scratch on its surface. Consequently the gradual elevation of a continent or chain of mountains above the surface of the ocean, or their depression below it, is no very great event compared with the magnitude of the earth, and the energy of its subterranean fires, if the same periods of time be admitted in the progress of geological as in astronomical phenomena, which the successive and various races of extinct beings show to have been immense. Climate is always more intense in the interior of continents than in islands or sea-coasts. An increase of land within the tropics would therefore augment the general heat, and an increase in the temperate and frigid zones would render the cold more severe. Now it appears that most of the European, North Asiatic, and North American continents and islands were raised from the deep after the coal-measures were formed in which the fossil tropical plants are found; and a variety of geological facts indicate the existence of an ancient and extensive archipelago throughout the greater part of the northern hemisphere. Sir Charles Lyell is therefore of opinion that the climate of these islands must have been sufficiently mild, in consequence of the surrounding ocean, to clothe them with tropical plants, and render them a fit abode for the huge animals whose fossil remains are so often found; that the arborescent ferns and the palms of these regions, carried by streams to the bottom of the ocean, were imbedded in the strata which were by degrees heaved up by the subterranean fires during a long succession of ages, till the greater part of the northern hemisphere became dry land as it now is, and that the consequence has been a continual decrease of temperature.

It is evident, from the marine shells found on the tops of the

highest mountains and in almost every part of the globe, that immense continents have been elevated above the ocean which must have engulfed others. Such a catastrophe would be occa→ sioned by a variation in the position of the axis of rotation on the surface of the earth; for the seas tending to a new equator would leave some portions of the globe and overwhelm others. Now, it is found by the laws of mechanics that in every body, be its form or density what it may, there are at least three axes at right angles to each other, round any one of which, if the solid begins to rotate, it will continue to revolve for ever, provided it be not disturbed by a foreign cause, but that the rotation about any other axis will only be for an instant, and consequently the poles or extremities of the instantaneous axis of rotation would perpetually change their position on the surface of the body. In an ellipsoid of revolution the polar diameter and every diameter in the plane of the equator are the only permanent axes of rotation (N. 145). Hence, if the ellipsoid were to begin to revolve about any diameter between the pole and the equator, the motion would be so unstable that the axis of rotation and the position of the poles would change every instant. Therefore, as the earth does not differ much from this figure, if it did not turn round one of its principal axes, the position of the poles would change daily; the equator, which is 90° distant, would undergo corresponding variations; and the geographical latitudes of all places, being estimated from the equator, assumed to be fixed, would be perpetually changing. A displacement in the position of the poles of only two hundred miles would be sufficient to produce these effects, and would immediately be detected. But, as the latitudes are found to be invariable, it may be concluded that the terrestrial spheroid must have revolved about the same axis for ages. The earth and planets differ so little from ellipsoids of revolution, that in all probability any libration from one axis to another, produced by the primitive impulse which put them in motion, must have ceased soon after their creation from the friction of the fluids at their surface.

Theory also proves that neither nutation, precession, nor any of the disturbing forces that affect the system, have the smallest influence on the axis of rotation, which maintains a permanent position on the surface, if the earth be not disturbed in its rotation by a foreign cause, as the collision of a comet, which might

have happened in the immensity of time. But, had that been the case, its effects would still have been perceptible in the variations of the geographical latitudes. If we suppose that such an event had taken place, and that the disturbance had been very great, equilibrium could then only have been restored with regard to a new axis of rotation by the rushing of the seas to the new equator, which they must have continued to do till the surface was everywhere perpendicular to the direction of gravity. But it is probable that such an accumulation of the waters would not be sufficient to restore equilibrium if the derangement had been great, for the mean density of the sea is only about a fifth part of the mean density of the earth, and the mean depth of the Pacific Ocean is supposed not to be more than four or five miles, whereas the equatorial diameter of the earth exceeds the polar diameter by about 26 miles. Consequently the influence of the sea on the direction of gravity is very small. And, as it thus appears that a great change in the position of the axis is incompatible with the law of equilibrium, the geological phenomena in question must be ascribed to an internal cause. Indeed it is now demonstrated that the strata containing marine diluvia, which are in lofty situations, must have been formed at the bottom of the ocean, and afterwards upheaved by the action of subterraneous fires. Besides, it is clear, from the mensuration of the arcs of the meridian and the length of the seconds' pendulum, as well as from the lunar theory, that the internal strata and also the external outline of the globe are elliptical, their centres being coincident and their axes identical with that of the surface—a state of things which, according to the distinguished author lately quoted, is incompatible with a subsequent accommodation of the surface to a new and different state of rotation from that which determined the original distribution of the component matter. Thus, amidst the mighty revolutions which have swept innumerable races of organized beings from the earth, which have elevated plains and buried mountains in the ocean, the rotation of the earth and the position of the axes on its surface have undergone but slight variations.

The strata of the terrestrial spheroid are not only concentric and elliptical, but the lunar inequalities show that they increase in density from the surface of the earth to its centre. would certainly have happened if the earth had originally been


« PreviousContinue »